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a b s t r a c t

Given a database of any quantifiable set of cause and effect, machine learning methods can be trained to
predict future effects based upon an assumed set of causes. In this paper, neural networks are trained to
predict the bulk Young’s modulus and electrical conductivity of a two-phase composite with high mate-
rial property contrast, based upon a sample’s microstructure. Various structure metrics are used to quan-
tify the topological connectivity and disorder of analytically generated heterogeneous samples. The
neural network is trained to predict the Young’s modulus and coefficient of electrical conductivity based
upon values calculated for a training set of samples using a finite element model. By repeating the process
with various subset of structure metrics we can determine which metrics—or combination of metrics—
have the strongest influence in accurately predicting bulk material properties. Not only are neural net
predictions of bulk properties in good agreement with calculated values for the 2D two-phase compos-
ites, but the insights into which metrics most strongly correlate with these properties (in this case, the
connectivity metrics) may help focus the development of improved structure–property relations.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Composites composed of two or more constituent materials are
studied extensively in materials science and engineering. Homog-
enizing the locally heterogeneous properties and structure to
arrive at global properties for such a material is a common goal
[1–6]. Understanding how the microstructure of a heterogeneous
material influences its bulk properties (such as Young’s modulus
and electrical conductivity) may ultimately allow the microstruc-
ture of the material to be designed and fabricated in such a way
as to produce specifically desired bulk properties in the material
[7–9].

Exact solutions for the homogenization of spheres, ellipsoids,
and other geometries of a material deposited within a matrix of a
second material have been determined analytically ([1,2]). How-
ever, not all material arrangements have an analytical solution
describing homogenized behavior. To gain better understanding
of these materials, theories have been developed to predict bulk
material properties as well as possible ranges of values. Effective
medium theory is one such theory that works well in predicting

the homogenization values of a sample whose constituent materi-
als have material property values similar to each other [10]. Effec-
tive medium theory becomes less accurate for homogenization as
the constituent material properties become more and more dissim-
ilar. For samples composed of dramatically different constituent
materials percolation theory is a more appropriate tool to determine
bulk properties [11–13]. Furthermore, various theories exist for
providing bounds on the range of possible values of homogenized
physical properties for a heterogeneous material [14–17].

Homogenization methods can often produce an accurate esti-
mation of bulk properties under certain conditions, but each falls
short in pinpointing exact values consistently. This may be due
as much to insufficiency of structure information in the structure
metrics that are input to the models as it is to the overall failings
of the model itself to capture underlying physics. Typical descrip-
tors of structural arrangement include n-point statistics [2,8], clus-
tering [18] and percolation metrics [10,12,19,20]. More recently,
interest has risen in more esoteric structure metrics, such as
homology [21–23] and geometrical entropy [24,25]. The aim of this
paper will be to assemble a variety of different structure metrics
that describe connectivity, entropy, etc. and feed these into a
machine learning environment to determine which structure
descriptors have the strongest influence on the global properties,
and to determine whether an accurate prediction of homogenized
properties is possible using the full set of metrics.
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2. Materials and methods

In order to assess the structure–property relations of a range of
2D heterogeneous material samples, two-phase composites are
created on a simple square lattice that is 128 by 128 pixels using
Matlab [26]. These two dimensional samples may be referred to
as plates. The size of the plates was chosen to enable numerous
computations to be undertaken in a reasonable amount of time,
while also providing samples that are at least close to being repre-
sentative of a bulk material geometry. In our investigation, all sam-
ples are 50% matrix (black) and 50% particulate (white). The
contrast between the properties of the two material phases is high
for both stiffness and electrical conductivity. The matrix has values
of Young’s modulus and electrical conductivity of E1 = 107 Pa, and
r1 = 105 S/m, respectively. The particles have the properties
E2 = 7 ⁄ Pa, and r2 = 109 S/m. These properties represent a typical
order of magnitude contrast that might be found in common com-
posite materials.

Three different sample-generating algorithms are employed so
that a variety of geometrical arrangements can be analyzed. These
algorithms employ different methods for clustering particles. The
first algorithm creates microstructures that exhibited chains of
approximately spherical particles that are ‘‘strung’’ together, thus
the name, ‘‘stringy clusters’’. In this algorithm, particles are seeded
by randomly selecting center points until 10% of the desired vol-
ume fraction is reached. Then, as the additional particles are
placed, they are moved some percentage closer to their nearest
neighbor. The second algorithm creates microstructures that fea-
ture clusters that are circular in nature called ‘‘circle clusters’’. In
this algorithm, particles are randomly placed into a virtual circle,
which represented a cluster, until a specified volume fraction is
reached. The cluster was then randomly placed in the sample
space. This process continues until the desired sample volume frac-
tion is reached. Clusters never have a diameter more than half the
height of the sample plate (64 pixels). The third and final algorithm
for generating sample plates is to randomly assign each pixel of our
lattice to be either matrix or particle material. Fig. 1 shows exam-
ples of plates generated from these algorithms. The volume frac-
tion of each of these algorithms is adjustable; more details
regarding these algorithms are given in Ref. [27].

3. Calculation

3.1. Microstructure metrics

The constituent materials of any heterogeneous sample can
form into an essentially infinite number of geometric arrange-
ments. Attempting to describe the precise geometric layout of
material phases is impractical, and may even be impossible.

However, there are topological and large-scale behaviors that can
easily be described in a quantitative manner.

In this analysis nine metrics of the composite structure are
used. These metrics relate to the connectivity/percolative nature,
the homology and the entropy of the system. In the list of them,
below, the first six are measures of topological connectivity related
to homology; the last two are geometric measures; and the
remaining metric, entropy, is a measurement of disorder. We also
include the range of values observed in this study. See the Appen-
dix for more details regarding the individual definitions, and exam-
ples of metric values for particular structures.

1. Betti zero: the number of disconnected pieces of particulate
material. b0(v) [1,291].

2. Betti one: the number of independent interior loops within
particle clusters. b1(v) [0,1100].

3. Betti zero/Betti one: b0(v)/b1(v). [0.00658, 65535]; the
peak value is capped when b1(v) is zero.

4. Relative Betti zero homology: the Betti zero number for the
plate with top and bottom edges of plate acting as particu-
late material. b0(v, T + B) [0, 263].

5. Relative Betti one homolgy: the Betti one number for the
plate with top and bottom edges of plate acting as particu-
late material. b1(v, T + B) [0, 1156].

6. Percolation: equates to one if percolation occurs across the
particles, else zero. (P) [0, 1].

7. Entropy: the disorder of the materials within the sample
plate. (e) (see Appendix) [183.3, 5700.66].

8. Maximum cluster height: the height of the cluster of partic-
ulates. (hmax) [33, 128].

9. Mean cluster height: the arithmetic mean height of all clus-
ters of particulates. (havg) [2.94, 126].

3.2. Finite element analysis

The bulk properties are calculated using finite element software
ANSYS [28]. The two material properties that we examine, Young’s
modulus and electrical conductivity, are calculated only in the ver-
tical direction (see Fig. 2). Material one (black) has a Young’s mod-
ulus of E1 = 1.0 ⁄ 107 Pa, and conductivity of r1 = 1.0 ⁄ 105 S/m
material two (white) has a Young’s modulus of E2 = 7.0 ⁄ 109 Pa,
and conductivity of r2 = 1.0 ⁄ 109 S/m.

To calculate Young’s modulus for a 2-D plate, the bottom nodes
are prevented from moving in the y-direction. The top nodes are
displaced by an equal distance in the y-direction to produce a sam-
ple strain of 0.01, thus keeping the top edge of the sample flat; the
side nodes are free to move in x and y. The overall required force to
produce the strain is used to calculate Young’s modulus for the
entire plate. Similarly, conductivity is found by applying a voltages

Fig. 1. Three different examples of geometrical arrangements of samples that might be used. Left: stringy cluster algorithm. Middle: circle cluster algorithm. Right: random
placement.
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