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a b s t r a c t

In this paper we study the performance of the discrete element method (DEM) and the extended finite
element method (XFEM) modelling the crack initiation, propagation and coalescence in fractured rock
masses. Firstly, the crack propagation in a rock sample with single closed and open flaws and subjected
to an uniaxial compression is simulated by the DEM and XFEM. The results obtained by the two methods
are then compared with the experimental results reported by Park and Bobet (2009). Under an uniaxial
compression load, two types of cracks are observed including the tensile or wing cracks, and the shear or
secondary cracks. The results obtained by the DEM are in good agreement with the experimental results,
viz., both wing and shear cracks are accurately modelled. The XFEM, on the other hand, can predict the
tensile (wing) cracks, but fails to model the shear cracks. In second part of this study we consider the
analysis of fracture propagation and coalescence in rock masses containing two open or closed flaws.
The results predicted by the DEM and XFEM are then compared with experimental test results. Coales-
cence is produced by the linkage of two flaws and a combination of wing and secondary cracks. In the
crack propagation and coalescence problem, the DEM is able to predict all cracks involved in rock frac-
turing, such as the wing and secondary cracks, as well as the crack linkage between two adjacent flaws
and their subsequent coalescence. However, the XFEM results only represent the wing cracks, and the
method fails to predict the shear cracks. Finally, the effect of filling materials in open flaws on the crack
propagation is investigated. The results indicate that the initiation and propagation of cracks and their
coalescence in a material containing open flaws significantly change when the flaws are filled with a
weak material.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that brittle materials, such as rocks and con-
crete, contain pre-existing micro-cracks, which significantly affect
their behaviour. Rock masses are generally discontinuous in nat-
ure, and contain fractures (joints) with corresponding spacing
and rock bridges, which play an important role in the strength of
a rock formation. The propagation and coalescence of cracks initi-
ating from such pre-existing defects, on a variety of scales, are the
dominant failure mechanisms controlling the strength and integ-
rity of brittle materials. A rock mass is not necessarily a continuous
medium, nor a totally discrete medium but a kind of defect mate-
rial which contains cracks, joints and faults. The nonlinear defor-
mation behaviour of a rock mass is induced by the propagation
and coalescence of cracks and joints under the external loads.

Therefore, in rock engineering problems it is important to analyse
the propagation and coalescence process of cracks existing in a
rock mass subjected to loads. The study of crack initiation and
propagation is also important for better understanding of rock
mass behaviour which, in turn, plays an important role in rock
engineering applications, such as tunnels, foundations and slopes,
as well as hydrocarbon and geothermal energy extraction. Cracking
mechanisms have been studied experimentally in the laboratory,
or in the field, and numerically on computers. A brief history of
experimental and numerical investigations in crack propagation
and coalescence in rock masses is presented in the following.

One of the first experimental studies on the cracking mecha-
nism in rocks was conducted by Brace and Bombolakis [1]. Studies
specifically addressing coalescence include those conducted by
Shen et al. [2], Bobet and Einstein [3], Wong and Chau [4], Wong
et al. [5], and Li et al. [6]. Recently, coalescence experiments have
been conducted using high speed cameras to determine the initia-
tion, propagation direction, and mode of cracking associated with
flaw pairs [6–8]. In terms of numerical modelling, researchers have
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attempted to simulate crack initiation, propagation and coales-
cence in the rock type materials. From early twentieth century,
many researchers developed a few criteria to describe the initia-
tion, propagation and coalescence of cracks in brittle materials.
Specifically, several crack initiation and propagation criteria based
on the stresses, strains, and energy fields around a flaw tip have
been developed and implemented in the Boundary Element (BE)
and the Finite Element (FE) codes [9–19]. In recent years, models
such as the hybrid experimental–numerical methods [20–22], the
extended finite element models (XFEM) with cohesive zone [23–
26], and with p-order spectral elements [27], and peridynamics
[28,29] have been used to simulate quasistatic and dynamic crack
propagation problems. Also, the Distinct Element method (DEM)
was employed to simulate crack initiation and propagation in a
rock slope subjected to dynamic loading [30].

The finite element method (FEM) has been used to investigate
crack growth and coalescence. In the finite element-based meth-
ods, singular crack-tip elements are frequently adopted [31]. This
implementation requires the finite element mesh to coincide with
cracks. When growth of cracks and the update of their shape are
taken into account, remeshing cannot be avoided [31,45]. In addi-
tion, state variables such as displacements, stresses and strains
need to be remapped to a new mesh. Furthermore, in large defor-
mation problems, mesh distortion may cause a significant loss of
accuracy in the finite element interpolation. In order to overcome
the mesh distortion a remeshing technique, in which radial con-
centric meshes have been introduced at each crack tip, was pre-
sented for crack growth. The remeshing technique is based on a
precise control of several boundaries within a single mesh and
enables the analyst to consider several cracks [31]. Another reme-
shing technique, in which the high quality two-dimensional
meshes are generated by defining the outer boundary geometric
domains using Planar Straight Line Graphs, was proposed in [45].

The numerical manifold method (NMM) [33] can also be
applied to the crack propagation analysis. The numerical manifold
method (NMM) [33] is a combination of the FEM and the discontin-
uous deformation analysis (DDA) [34]. It provides a unified frame-
work for both continuous and discontinuous problems using
mathematical covers that are independent of the physical domain
of the problem. The NMM has been used for solving discontinuous
problems involving stationary crack and crack propagation. How-
ever, the crack tips are constrained to stop at the edges of the ele-
ment, which will reduce the accuracy if a crack tip happens to stop
inside the element. In order to improve the accuracy, the singular
physical covers containing the crack tips are enriched with the
asymptotic crack-tip functions. Then the stress intensity factors
(SIFs) can be accurately evaluated by using a regular and relatively
coarse mathematical cover system [35].

It is possible to apply a meshless approach to model the growth
of cracks. The meshless methods require only a description of geo-
metrical boundary and a set of nodes, but do not need any mesh. A
number of meshless methods have been proposed, such as the
Meshless Local Petrov–Galerkin method (MLPG) [36] and the Ele-
ment Free Galerkin (EFG) method [35]. The EFG can provide highly
accurate solutions for crack propagation problems using the mov-
ing least-squares interpolation. However, more nodes must be
added along the crack path when crack growth is modelled [36].

The boundary element method (BEM) is another numerical
method that is widely applied to model crack propagation. The
BEM has been recognised as an accurate and efficient numerical
technique for solving crack growth problems. In fracture mechan-
ics analyses, the BEM requires only boundary and the crack surface
discretisation. Therefore, the BEM requires less computational
effort to generate new elements to model crack growth. The BEM
is also particularly efficient in mixed-mode crack propagation
problems because remeshing can be avoided [38]. However, the

BEM cannot easily model the coalescence and localisation
phenomena.

In order to overcome the difficulties with remeshing of the FEM
in modelling propagation of cracks, some modifications to the FEM
have been developed within the framework of the partition of
unity method (PUM) [37], such as the extended finite element
method (XFEM). This method, which can be used to solve discon-
tinuous mechanical problems, was proposed in 1999 [40]. It was
shown that the XFEM is effective in modelling discontinuities in
problems such as interface growth, crack propagation, and com-
plex fluid material [40]. There are three main advantages for the
extended finite element method [38]. First, the details of substruc-
ture are neglected, and the mesh is generated according to the
geometry of model. Second, in order to track the growth of cracks
other methods, such as the level set method, are adopted. Then, the
location of cracks is accurately determined. Finally, in order to
model the propagation of cracks, only the shape function of the ele-
ment containing the crack is modified. Therefore, the properties of
stiffness matrix remain the same as its properties in the standard
finite element method. The concept of XFEM was introduced as a
technique to model crack growth without remeshing [38–40].
The XFEM is based on the partition of unity property. Local enrich-
ment functions, with additional degrees of freedom, are included in
the standard finite element approximation. However, the XFEM
requires some external criteria in order to predict crack growth.
Moes et al. [45] incorporated discontinuous displacement enrich-
ment using Heaviside functions to capture the displacement dis-
continuity near a crack tip. The concept of a stress intensity
factor was employed to determine when the crack growth
occurred, and the maximum circumferential stress criterion was
applied to determine the direction of crack growth. Later, a cohe-
sive law was used to model crack growth in the XFEM. Tractions
on the crack surface were governed by the traction-separation
law [41].

The discrete (or distinct) element method (DEM) is a discontin-
uous analysis method proposed by Cundall et al. [47] for studying
two-dimensional slope stability problems in jointed rock masses.
In DEM the objects are modelled as systems of discontinuous
bodies interacting with each other. Based on the Newton’s second
law, the equations of motion are integrated using an explicit time-
marching scheme. The discrete element method can take into
account many kinds of discontinuities and material failure charac-
terised with multiple fractures, making it a suitable tool to study
rock fracturing.

In many mechanisms of geotechnical failure, the overall rupture
surface is formed by the union of several pre-existing discontinu-
ities that propagate by coalescence process. It is notable that crack
propagation under compressive conditions is caused by tensile
stresses that act near the tips of pre-existing cracks [42]. Under
these conditions, propagation is initiated, forming primary tensile
cracks that propagate in the direction of the applied load (wing
cracks) [43–45]. In studies performed by Park and Bobet [10] on
gypsum specimens subjected to uniaxial compression, up to three
types of fractures propagated as a result of the applied load; pri-
mary cracks generated by tension (Mode I), which initiated at the
edges of the crack and contained no pulverized material, and two
types of secondary cracks (coplanar and oblique), which were gen-
erated by shear (Mode II) and feature pulverized material on the
failure surface. These cracks are depicted in Fig. 1.

Coalescence is defined as the connection of pre-existing cracks
and discontinuities in a rock material via propagation. The connec-
tion type depends on the position of the cracks and the type of
propagation involved. Several authors have studied this
mechanism. For example, Ghazvinian et al. [48–52] analysed the
influence of the distance between two co-planar cracks in the coa-
lescence between them using the shear test results and numerical
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