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a b s t r a c t

Methods based on first-principles calculations have proven effective for predicting the thermodynamic
stability of materials that have not previously been considered. However, the vast majority of these pre-
dictions are based on 0 K calculations, which means that little is known about the effects of temperature
on their accuracy. This causes considerable uncertainty with respect to stability predictions of new
hypothetical phases.

In this work we combine first-principles calculations with an optimization procedure to calculate the
phase stability as a function of temperature for Ti2AlC, Ti3AlC2 and Ti4AlC3 MAX phases with respect to
their most competing phases in the Ti–Al–C phase diagram, in a temperature interval from 0 to
2000 K. To model nonzero temperatures, we include effects from the electronic and vibrational free
energies to the Gibbs free energy for all relevant competing phases. We show that, due to a mutual
cancellation of the temperature dependent energy terms, the results of neither the harmonic nor the
quasiharmonic calculations differ significantly from the calculated 0 K formation energies. We thus pro-
vide a plausible explanation for the success of previous 0 K predictions, an explanation which also serves
as evidence for the hypothesis that the phase stability in many materials systems is primarily governed
by the 0 K energy terms.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Since its discovery in the 1960s by Nowotny [1], the class of so-
called MAX phases has been subjected to extensive theoretical and
experimental research. The general formula of these nanolaminat-
ed, hexagonally structured materials is Mn+1AXn, where M is a tran-
sition metal, A is an A-group element, and X is most commonly
carbon and/or nitrogen. Due to the metallic M–A bonds and
ionic-covalent like M–X bonds, MAX phases possess both properties
typical of metals such as good machinability and high electrical as
well as high thermal conductivity, and ceramic properties such as
high hardness and resistance against corrosion and the wearing
effects of high temperatures [2,3]. Because of this, MAX phases
show potential for, e.g., electrical contacts, tool coatings, and as
structural material in demanding environmental conditions.

A useful tool in the search for new and not yet experimentally
verified materials – and in this particular case, MAX phases – is a
computational method described in detail in two papers by

Dalhqvist et al. [4,5]. It combines first-principles calculations with
a linear optimization procedure to find the set of most competing
phases at any compositional point of interest in a multinary space.
Equivalent approaches have also been used to search for new ther-
modynamically stable phases in other multicomponent systems
such as Heusler alloys and oxynitrides [6,7]. The method has been
used to retrodict and to successfully predict the existence of sev-
eral MAX phases, and also to explain failed synthesis attempts of
hypothetical MAX phases. The number of retrodicted MAX phases
include, e.g., Cr2AlC, Ti2AlC, Ti3AlC2, Ti2AlN, Ti4AlN3, Ti3SiC2,
V2AlC, V3AlC2 and V4AlC3�d [5,8]. Examples of predicted and later
experimentally verified phases are Nb2GeC, (Cr1�xMnx)2AlC,
(Cr1�xMnx)2GeC, and Mn2GaC [9–12]. However, while this serves
as evidence that the method is reliable, there are potential pitfalls
that need to be considered.

As in the above examples, most first-principles based phase sta-
bility calculations are performed at 0 K. This means that neither
the electronic nor the vibrational (i.e., phonon) entropic contribu-
tions to the total energy are taken into account. However, configu-
rational entropy is sometimes considered in the case of alloys
[11,13]. Considering temperature induced excitations could be
necessary if the difference in energy between the investigated
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phase and its most competing phases is otherwise small enough to
be comparable in size to the errors introduced by the finite
accuracy of the calculations. As is noted by Dahlqvist et al. [5],
for the hypothetical case of Ti4AlC3, including temperature depen-
dent contributions in the calculations might play an essential role
in determining whether this phase is stable or not. Another case
could be if a particular phase, which is thermodynamically or
even dynamically unstable at low temperatures, is stabilized and
becomes important as a competing phase at high temperatures.

Calculations of various physical properties of crystals at
nonzero temperatures are not nearly as commonly reported in
the literature as 0 K calculations due to the higher theoretical
complexity and much higher computational demands, stemming
mainly from the vibrational contribution to the formation energy.
Nevertheless, due to technological advances such calculations are
rapidly becoming practically feasible, and in recent years several
MAX phase related theoretical studies dealing with temperature
dependence have been published. While most of these studies
have been dedicated to the characterization of thermodynamic
properties such as heat capacity, thermal expansion, and bulk
modulus [14–18], some of them have indeed focused on phase
stability. However, their scopes have been limited to investiga-
tions of the relative stability between a and b MAX phase
polymorphs [19–21].

In this work, we extend the 0 K method described in Ref. [5] into
a temperature dependent phase stability criterion based on the
Gibbs free energy within the so-called harmonic and quasiharmon-
ic approximations (HA and QHA). We investigate the phase stabil-
ity of the Tin+1AlCn (for n = 1–3) MAX phases with respect to
competing phases in the Ti–Al–C phase diagram, in a temperature
interval from 0 to 2000 K. The HA is used to model all phases, and
for a carefully selected subset we also use the QHA for comparison.
We show that despite the inclusion of both the electronic and the
vibrational contributions to the Gibbs free energies, neither within
the HA nor the QHA are the calculated phase stabilities signifi-
cantly affected as compared to the 0 K case. This result thus pro-
vides further evidence that it is mainly the 0 K energy terms that
govern phase stability, or, stated differently, that 0 K calculations
can indeed be used for confident predictions of the existence of
new MAX phases.

2. Methodology

2.1. Thermodynamic phase stability

If the electron–phonon interactions are assumed to be negligi-
ble, the Gibbs free energy can be written as

Gðp; TÞ ¼ E0ðVÞ þ FelðT;VÞ þ FvibðT;VÞ þ FcðTÞ þ pV ; ð1Þ

where E0(V) is the zero-temperature energy of the crystal, i.e., the
energy that the phase would have at 0 K at volume V, and Fel, Fvib,
and Fc are the free electronic, vibrational and configurational ener-
gies, respectively. The last term in Eq. (1) has been neglected in the
present work, as the ambient pressure was set to 0 GPa.

The free electronic energy Fel is given by the difference between
the electronic excitation energy, Eel, and the entropic contribution,
TSel:

FelðV ; TÞ ¼ EelðV ; TÞ � TSelðV ; TÞ: ð2Þ

Eel can be found by subtracting the total electronic energy in the
excited state with the electronic ground state energy,

EelðV ; TÞ ¼
Z 1

0
nðe;VÞef ðeÞde�

Z ef

0
nðe;VÞede; ð3Þ

where n(e, V) is the electronic density of states, f(e) the Fermi–Dirac
distribution, and eF the Fermi energy.

The electronic entropy Sel can be expressed as

SelðV ; TÞ ¼ �kB

�
Z

nðe;VÞ f ðeÞð ln f ðeÞ þ ð1� f ðeÞÞ lnð1� f ðeÞÞ½ �de: ð4Þ

The vibrational free energy in Eq. (1) is given by

FvibðV ; TÞ ¼
1
2

X
q;m

�hxq;m þ kBT
X
q;m

ln 1� expð��hxq;m=kBTÞ
� �

; ð5Þ

where x is the phonon frequency, q is the wave vector, and m is the
band index [14].

Finally, the free configurational energy Fc can be written as

FcðTÞ ¼ EcðTÞ � TScðTÞ; ð6Þ

for which the mean field approximation (MF) often gives a good
estimate, with Ec = Erandom � E0 and

SMF
c ¼ �kB

Xn

i

yi ln yi; ð7Þ

where yi is the mole fraction of species i. Here Erandom is the energy
of an ideally disordered random alloy that can be modeled with,
e.g., the special quasirandom structure (SQS) technique while SMF

c

is the corresponding configurational entropy of an ideal solid solu-
tion. However, with one single exception the phases included in this
work are compositionally ordered, which means that Fc is zero.

In the harmonic approximation, the volume dependence of G
(i.e., thermal expansion) is neglected. Using the HA speeds up the
calculations significantly, but the results are less accurate as com-
pared to the quasiharmonic approximation, under which the vol-
ume dependence of G is included.

Once the Gibbs free energy for all relevant phases have been
calculated, a linear optimization procedure is employed in order
to determine whether the phase of interest is stable or not with
respect to any combination of other competing phases. This proce-
dure works by identifying the set of competing phases for which
the sum of the respective Gibbs free energies is minimized. Thus,
if the stability of a MAX phase is investigated we get

min GcpðbM
; bA

; bXÞ ¼
Xn

i

xiGi; ð8Þ

where bM,A,X is the amount of species M, A, and X in the MAX phase,
xi is the amount of compound i, and Gi its free energy. The weighting
factors xi must be chosen so that the total amount of each atomic
species in the set of competing phases is the same as in the MAX
phase. The constraint put on xi is such that

xi P 0;
Xn

i

xib
M
i ¼ bM

;
Xn

i

xib
A
i ¼ bA

;
Xn

i

xib
X
i ¼ bX

:

The condition for thermodynamical stability is that

DGcp ¼ GMAX � Gcp < 0; ð9Þ

i.e., the difference between the Gibbs free energy of the investigated
phase and the Gibbs free energy for the identified set of most com-
peting phases is less than zero. Here we note that some authors use
the convention that the investigated phase itself is included in the
set of competing phases, giving DGcp = 0 for all stable phases and
a positive ‘‘instability energy’’ for all other cases. However, such a
procedure hides useful information of how stable, in terms of the
magnitude of negative values of DGcp, the investigated phase is with
respect to other phases. As all computational approaches involve
approximations, a value of DGcp that is just below zero might not
guarantee successful experimental synthesis while a case where
DGcp is well below zero with several tenths of meV/atom is more
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