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ABSTRACT

This paper introduces an alternative approach for the topological design of microstructures of materials
that are composed of three or more constituent phases. It is assumed that the materials are made up of
periodic microstructures. Bi-directional Evolutionary Structural Optimization (BESO) methodology is
applied for designing materials’ microstructures with maximum bulk modulus, shear modulus or thermal
conductivity. Constituent phases are divided into groups and sensitivity analyses are performed in order
to estimate their effects on the variation of the objective function. Changing the elemental properties in
the finite element model of the microstructure is performed based on this sensitivity analyses and by
imposing volume constraints on the constituent phases. Numerical examples are presented to demon-
strate the effectiveness of the algorithm in terms of identification of the phases’ boundaries and conver-
gence speed. The proposed approach could potentially be used to design multiphase materials for

Homogenization

functional properties other than stiffness and thermal conductivity.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In comparison with cellular materials that are composed of one
solid phase and a void phase, composites of two or more materials
are more advantageous and attractive for practical applications.
One of the reasons is that by combining different constituent
phases, a wider range of properties could be achieved which are
not attainable by individual constituent phases. In addition,
multi-functional multifunctional composites more often than not
consist of two or more constituent phases [1].

It is known that the physical properties of composites can be
altered by changing the composition and/or microstructural topol-
ogy of the constituent phases. To find the best spatial distribution
of the constituent phases within the microstructure of a composite,
structural topology optimization methodology can be applied [2,3].
Here, the aim is to solve the inverse problem of finding microstruc-
tures with desired functional properties [2]. Different topology
optimization techniques offer advantages and disadvantages in
terms of computational cost and efficiency, quality of generated
microstructures, robustness, and the level of effort for implemen-
tation as a computational post-processing procedure, to name few.

In optimization of microstructures for multi-phase materials, it
is desirable to represent the topology of the constituent phases by
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continuous interface functions. The level-set topology optimization
method [4] can provide such sharp interfaces between different
constituent phases. For this purpose, the approach requires the
definition of higher-dimensional functions to represent the bound-
aries of constituent phases which is mathematically complicated
[5]. In addition special attention must be paid to the splitting of
phases. The level-set method is generally devised to describe the
propagation of interfaces with a defined speed function; therefore,
new phase regions within existing shapes and away from the
boundaries cannot be initiated without additional schemes [6,7].
Because of the mathematical complications, in general the
approach has not reached the stage of regular application for the
design of composites with multiple phases.

Homogenization method [8] has also been used for topology
optimization of materials’ microstructures in a number of studies
[9,10]. In these studies the materials’ microstructures are considered
as a combination of even much smaller microstructures. These latter
microstructures are introduced with different material models such
as square unit cells with rectangular void or rank layered materials
and their properties are controlled by their geometrical parameters.
The geometrical parameters are defined as design variables. The
objective of optimization is to find their optimal values (for example
the sizes and orientation of the void regions in square unit cells).
Except for the issue of existence of solutions [11], these types of
topology optimization require performing multi-scale analysis
[10] which is costly. In addition, in the case of multiphase materials,


http://crossmark.crossref.org/dialog/?doi=10.1016/j.commatsci.2014.04.064&domain=pdf
http://dx.doi.org/10.1016/j.commatsci.2014.04.064
mailto:huang.xiaodong@rmit.edu.au
http://dx.doi.org/10.1016/j.commatsci.2014.04.064
http://www.sciencedirect.com/science/journal/09270256
http://www.elsevier.com/locate/commatsci

A. Radman et al./ Computational Materials Science 91 (2014) 266-273 267

the generated ranked laminates have zero shear stiffness in one
direction, which makes the solutions unstable [12]. Besides, the
optimal solutions usually have high manufacturing costs since there
are infinitesimal cavities in the microstructures [12].

Inspired by the homogenization method, Solid Isotropic Mate-
rial with Penalization (SIMP) has been proposed [8]. It has also
been tailored for the design of periodic microstructures for com-
posites with two material phases and a void phase [13,14]. The
key point in these studies is the introduction of three design vari-
ables (x;1, Xi2, X;3) for each element that corresponds to three con-
stituent phases. By defining an artificial mixing function, local
material properties are correlated with the design variables. This
assumption is only valid if the design variables take their extreme
values (for example x;; =1 and xj, x;3 =0, which means that the
element is filled with constituent phase 1). To circumvent the
numerical instabilities associated with utilizing discrete design
variables, the SIMP uses a relaxation method in which the design
variables are freed to take any value between 0 and 1 [15]. Such
an approach leads to intermediate densities in the final topology.
In the SIMP approach, it is tried to eliminate the intermediate den-
sities through penalization in the final solution. However, increas-
ing the penalty exponent not only cannot solve the problem
completely, but also may result in difficulties in convergence of
the solution [16-18]. In comparison with cellular microstructures
designed with single material phase, in topology optimization of
multi-phase materials the SIMP usually causes more difficulty in
interpretation and identification of the boundaries between con-
stituent phases [19]. Several approaches have been proposed to
tackle this issue in literature; Heaviside projection algorithm
[20], nonlinear diffusion techniques [21] and the phase field
approach based on Cahn-Hilliard model [19] are some of the these
methods. Nevertheless, these methods add additional computa-
tional cost to the optimization procedure.

Recently, the BESO approach has been developed for stiffness
optimization of macro-structures with multiple materials [22,23].
Although the generated structures are topologically similar to the
results of the SIMP approach, it has been shown that the procedure
is independent of the selection of penalization factor and provides
clearer boundaries between different materials. Better convergence
of the procedure together with high computational efficiency and
more importantly, the capability of the BESO in separating the con-
stituent phases, has made it a more promising tool for topology
optimization of multi-phase composite structures.

In this paper, the BESO methodology will be extended into the
design of composite materials with three or more non-zero constit-
uent phases. It is assumed that the material is composed of peri-
odic base cells (PBC) and the relationship between material’s
properties at the macroscopic level and microstructure at the
microscopic level is established through the homogenization the-
ory [24,25]. The objective function is defined to achieve materials
with maximum bulk modulus, shear modulus or thermal conduc-
tivity. The constituent phases are categorized into some groups
and sensitivity analyses are performed to assess the contribution
of elements within each group to the variation of the objective
function. The material type of each element is determined based
on these sensitivity numbers and by imposing the volume con-
straints. To tackle the numerical issues, the filtering is conducted
within the elements of each group. Finally, some 2D and 3D
numerical examples are presented.

2. Methodology
2.1. Problem statement

The stiffness of a composite material can be described by its
bulk or shear modulus of elasticity. Similarly thermal conductivity

indicates the behavior of materials in transferring heat. In the stiff-
ness optimization problems, it is assumed that the composite
material consists of N constituent phases with equal Poisson’s
ratios and Young’s moduli which are ordered descending (that is:
E'>E?>.>EN). Likewise in the conductivity problems, it is
assumed that the thermal conductivities of constituent phases
are ordered as k! > k2 >..>k".

Moreover, it is assumed that the microstructure of composites
is represented by a PBC which is discretized into finite elements.
The optimization problem statement for attaining a periodic
microstructure for composite with maximum bulk modulus, shear
modulus or thermal conductivity and with constraints on volume
fraction of each constituent phase can be expressed as:

Maximize f(x;) =K,G or k.
. M j-1
Subject to: V' = x;Vi— Y V™ 1)
i=1 m=1

Xij = Xmin O 1

where K, G or k. are the bulk modulus, shear modulus or thermal
conductivity of composite; M is the total number of elements
within the finite element model of the PBC; i and j denote the num-
ber of the finite element in the PBC and the number of the constit-
uent phase, respectively. V; and V¥* denote the volume of element i
and the prescribed volume of the jth constituent phase. x;; is the
design variable which indicates the density of the ith element for
the jth material phase and is expressed by:

1
Xij =
Xmin

where E and x denotes the Young’s modulus and thermal con-
ductivity of the ith element and X, is a very small value (e.g.
0.001). x; is equal to 1 when the element is filled with material
phase j or the constituent phases with larger stiffness/thermal
conductivity and X;=Xmin otherwise. As a result, the term
"M x;V; in Eq. (1) denotes the volume summation of the jth
phase and stiffer phases (j+1,...,M); the volume constraint in
Eq. (1) means that the volume of the jth phase should be equal
to the prescribed value, V™.

The physical property of the ith element is interpolated
between two neighboring phases using a power-law scheme. For
instance, the elemental elasticity matrix D can be interpolated as
[22]:

if E>F or (k> )
otherwise

@)

D(x;) = x'D/ + (1 — x5)D'"! (3)

in which the subscripts j and j + 1 indicate the phase numbers and p
is the penalty exponent which is usually equal to 3. Similarly the
thermal conductivity of the ith element can be interpolated
between two neighboring phases as:

K = x5 + (1 — X)) (4)

2.2. Homogenization theory and sensitivity analysis

For topology optimization of material’s microstructures, it is
necessary to calculate the macroscopic properties of the composite
based on the distribution of constituent phases within its
microstructure. If a heterogeneous composite possesses certain
types of regularity at the microscale, its properties can be
estimated by modeling the PBC with the help of the homogeniza-
tion theory [24,25]. For example the homogenized elasticity
matrix of materials with repeating (periodic) microstructures is
expressed as:
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