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a b s t r a c t

Studied is the three-dimensional definition of macroscopic kinematical measures for a representative
assembly element (RAE) of a dense granular material, which is assimilated to a representative volume
element (RVE) filled with a continuum medium. The geometrical transition from an RAE to an RVE is con-
structed by means of the Voronoi and Delaunay tessellations associated with the grain centers. After
establishing the compatibility conditions that the grain center displacements must satisfy, explicit micro-
mechanical expressions are derived for the macroscopic deformation and velocity gradient tensors. Using
these expressions, various macroscopic strain and strain-rate tensors are defined as in continuum
mechanics.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

In mechanics of granular materials, a subject of long standing is
to correlate the overall mechanical behavior of a granular material
to the geometry, spatial distribution and mechanical behavior of
the constituent grains. The discrete, or discontinuous, nature of
granular materials makes them rather different from the inhomo-
geneous materials considered within the usual framework of
micromechanics [see, e.g., 17,20,32]. For this reason, some basic
micromechanical concepts and relationships, which are well-
established in the spirit of continuum mechanics, fail to be valid
for granular materials. Among these basic concepts and relation-
ships, the definition of macroscopic strain and strain-rate tensors
has indirectly or directly attracted attention for long time but is
still an open problem [see, e.g., 1–7,9–14,26–28,34,37]. Lack of a
general method for defining macroscopic strain and strain-rate
tensors currently constitutes a source of difficulties encountered
not only in the development of micromechanics of granular mate-
rials [8] but also in the interpretation of experimental results [9]
and in the computational mechanics of granular materials [6,28].
The present paper attempts to go a step further towards solving
this fundamental problem.

In micromechanics, the definition of macroscopic deformation
and stress measures is primarily based on the requirement that
they be completely determined by the boundary data of a repre-
sentative volume element. This is because theories or experimental
determinations of the mechanical behavior of inhomogeneous
materials rest ultimately on the overall response of such an ele-
ment via measured loads and displacements on its surface [see,
e.g., 21,23,31]. For the inhomogeneous materials (polycrystals,
composites, etc.) usually considered in micromechanics, it turns
out that the volume averages of the Cauchy stress and infinitesimal
strain tensors in the case of infinitesimal transformations, and the
volume averages of the first Piola–Kirchhoff stress and deformation
gradient tensors in the case of finite transformations, satisfy the
aforementioned requirement and behave as suitable measures for
the macroscopic deformation and stress. The reason that the vol-
ume averages of these tensor fields are uniquely dependent on sur-
face data alone is that they are assumed to verify, respectively, the
equilibrium and compatibility equations. This simple observation
is the key to understanding why an explicit micromechanical
expression for the macroscopic stress of a system of grains was al-
ready available in the famous treatise of Love [29] (pp. 616–619)
[see also 10,25,26,38] while an equivalent commonly accepted
for the macroscopic strain is still lacking. In fact, for a (cohesion-
less) granular material, i.e., an assembly of small grains whose
interactions obey the unilateral contact law [see, e.g., 19,30], the
equilibrium equations for the inter-granular contact forces are
classical and, on the other hand, the compatibility equations for
the inter-granular relative displacements are not available in an
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explicit general form. This prevents us from relating boundary to
internal grain displacements and, thus, from obtaining a microme-
chanical expression for the macroscopic strain.

After identifying the main obstacle to the micromechanical def-
inition of macroscopic strain and strain-rate tensors for granular
materials, we tackle it by considering a simple model. This model
consists in geometrically replacing the constituent grains of a rep-
resentative assembly element of a statistically homogeneous dense
granular material by their centers, and taking the domain gener-
ated and partitioned by the Delaunay tessellation as the domain
of a representative volume element filled with a continuum med-
ium. Inspired by a work of Kruyt and Rothenburg [26] and using
the Gauss (divergence) theorem, we establish the three-dimen-
sional compatibility equations for the grain center transforma-
tions. By means of these equations, we further derive explicit
micromechanical expressions for the macroscopic deformation
and velocity gradient tensors. Thereby, various macroscopic strain
and strain-rate tensors can be defined as in continuum mechanics.

The paper is organized as follows. In the next section, the title
problem is formulated in such a manner as to make appear the
main difficulties. In Section 3, the formulated problem is ap-
proached on the basis of the aforementioned simple model. In Sec-
tion 4, a few concluding remarks are given.

2. Setting of the problem

In what follows, a granular material refers to a medium consist-
ing of a countable number of rigid or deformable solid grains (or
particles) whose interactions comply with the unilateral contact
law, i.e., with a kinematic condition of impenetrability, a static con-
dition of no tension and a mixed condition of complementarity [see,
e.g., 19,30]. In what follows, we assume that the granular material
under consideration is statistically homogeneous so as to admit a
representative assembly element (RAE). In addition, we make the
assumption that the granular material is dense. Precisely, by this
it is meant that there is an RAE such that, both initially and under
a quasi-static loading, the void volume ratio of the domain en-
closed by the convex envelope of its grains is small enough and
the grains are multiply connected with each other. This definition
of dense granular materials extends the one of Satake [36] in that it
allows a grain to change its contact or no contact status relative to
a neighboring grain and excludes ’’floating’’ grains which are prob-
lematical for any static or quasi-static treatment.

Let N be the total number of the grains belonging to an RAE of
the considered granular material. Denoting the set f1;2; . . . ;Ng
by N , each grain of the RAE can be given a unique number i 2 N
and identified with the closed domain XðiÞ of R3 it occupies in
the initial configuration. The interior and boundary of XðiÞ are des-
ignated by XðiÞ and @XðiÞ. A motion of grain i is defined by a suffi-
ciently smooth mapping yðiÞ : XðiÞ � ½0;þ1½! R3, which assigns
the position vector yðiÞ at any time t 2 ½0;þ1½ to every xðiÞ 2 XðiÞ:

yðiÞ ¼ yðiÞ xðiÞ; t
� �

: ð1Þ

The configuration of grain i at time t is then given by
XðiÞ ¼ yðiÞ XðiÞ; t

� �
with the interior xðiÞ and boundary @xðiÞ. The dis-

placement is defined by

uðiÞ ¼ uðiÞ xðiÞ; t
� �

¼ yðiÞ xðiÞ; t
� �

� xðiÞ; ð2Þ

and the (material) velocity by

_yðiÞ ¼ _yðiÞ xðiÞ; t
� �

¼ @tyðiÞ xðiÞ; t
� �

: ð3Þ

The time dependence will be dropped when either it is irrelevant or
no risk of confusion is possible.

The unilateral contact law and the notion of an RAE have some
important geometrical or kinematical implications. Firstly, the

impenetrability condition of the unilateral contact law requires
the functions yðiÞ i 2 Nð Þ to be formally such that

y pð Þ X pð Þ; t
� �

\ y qð Þ X qð Þ; t
� �

¼£ for any p – q and any time t: ð4Þ

Secondly, for an RAE to make sense, it must contain a sufficiently
large number of grains and its size must also be sufficiently large
with respect to the size of each grain. Letting dðiÞ nð Þ be the Feret
diameter of XðiÞ in the direction of unit vector n, i.e., the distance be-
tween the two parallel planes perpendicular to n and tangent to XðiÞ,
and letting d nð Þ be the corresponding Feret diameter of
[i¼N

i¼1 XðiÞ (Fig. 1), then the latter size requirement can be character-
ized as

dðiÞ nð Þ � d nð Þ for all i 2 N and all n: ð5Þ

The problem studied in this paper can now be stated as follows:

Given an RAE for a granular material and the corresponding motion
functions yðiÞ i 2 Nð Þ, how to micromechanically define macro-
scopic measures for the RAE which is assimilated to a representa-
tive volume element (RVE) filled with a continuum medium?

The first difficulty encountered in dealing with this problem is
to specify the initial and transformed configurations of the RVE
in relation to the ones of the grains of a RAE. One way to circum-
vent this difficulty is to define the initial and transformed configu-
rations, X and �x,of the RVE as the convex combinations of those of
the grains:

X ¼ x 2 R3jx ¼
Xi¼N

i¼1

kðiÞxðiÞ;0 6 kðiÞ 6 1;
Xi¼N

i¼1

kðiÞ ¼ 1;xðiÞ 2 [i¼N
i¼1 XðiÞ

( )
;

ð6Þ

�x ¼ y 2 R3jy ¼
Xi¼N

i¼1

kðiÞyðiÞ;0 6 kðiÞ 6 1;
Xi¼N

i¼1

kðiÞ ¼ 1; yðiÞ 2 [i¼N
i¼1 �xðiÞ

( )
:

ð7Þ

The interiors X and x of X and �x correspond to the domains en-
closed by the convex envelopes @X and @x of the initial and trans-
formed configurations of the grains (Fig. 1). From the standpoint of
both experiment and practice, it is meaningful to define the initial
and transformed configurations of the RVE associated with an RAE
by (6) and (7), since the convex envelope @X or @x is mostly often
the actual surface across which the contact forces external to the
RAE can be applied. Further, (6) and (7) are particularly suitable
for the dense granular materials as defined at the beginning of this
section.

We observe that a function that can transform X into �x is a
priori not defined except over the part of [i¼N

i¼1 XðiÞ of X occupied
by the grains. At the same time, such a function is needed to be
able to apply the macroscopic kinematical variable definitions of
micromechanics [see e.g. 20,21,23,24,32]. Thus, it may appear

Fig. 1. Convex envelopes of the initial and transformed configurations of an RAE.
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