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a b s t r a c t

New properties of intersections and coincidences of transient concentration curves were discovered and

are presented analytically using the classical consecutive mechanism A-B-C as an example. We

identify six different special points, and analyze and classify the six possible (out of 612 combinations)

patterns of concentration peak and intersection times and values that distinguish the parameter

subdomains and sometimes can eliminate the mechanism. This developed theory is tested on examples

(multi-step radioactive decay, isomerization reaction). The mathematical analysis relies on a

combination of elementary and symbolic techniques, special functions and numerical approximations.

& 2010 Published by Elsevier Ltd.

Well met, Gentlemen, this is lucky that we meet so just
together at this very door. Izaak Walton and Charles Cotton,
The Compleat Angler (1676).

1. Introduction

Among the innumerable processes which take place in
chemistry and chemical engineering, there are some whose
features have as yet been woefully neglected. The goal of the
present paper is to distinguish and describe one family of such
features, i.e., intersection and coincidences of dependencies which
exhibit an unexpected elegance, both physical-chemical and
mathematical. Most of the results will be obtained analytically,
computer calculations will be used only to solve certain
transcendental equations and be mentioned as such.

1.1. Consecutive reactions: what was known before

Consecutive reactions are one of the best-known basic
mechanisms in chemical kinetics. The simplest example of such

sequential reactions is A-B-C. Many important chemical
processes are described via this scheme of reactions.
The simplest kinetic model is presented as follows:

dCA

dt
¼�k1CA, ð1Þ

dCB

dt
¼ k1CA�k2CB, ð2Þ

dCC

dt
¼ k2CB, ð3Þ

where CA, CB, CC are the concentrations of the substances A, B, C,
respectively, and k1 and k2 (1/s) are the rate constants of the first
and second reaction, respectively. The temperature dependency of
these rate constants is to be of Arrhenius-type,

ki ¼ ki,0 exp �
EA,i

RT

� �
, ð4Þ

where ki,0 is a pre-exponential factor (1/s), EA,i the activation
energy (kJ/mol), R universal gas constant ðkJ=mol KÞ, T is absolute
temperature ðKÞ.

The solution of this simple system equations can be found in
many popular textbooks (Hlavacek et al., 2007) 37b, (Froment and
Bischoff, 1990), on physical chemistry and chemical kinetics,
even on Wikipedia. If CC,0¼0, the results are well known:
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when k1ak2

CAðtÞ ¼ CA,0 expð�k1tÞ, ð5Þ

CBðtÞ ¼ CA,0k1
expð�k1tÞ�expð�k2tÞ

k2�k1
þCB,0 expð�k2tÞ, ð6Þ

CCðtÞ ¼ CA,0 1�
k2 expð�k1tÞ�k1 expð�k2tÞ

k2�k1

� �
þCB,0ð1�expð�k2tÞÞ,

ð7Þ

so that

CAðtÞþCBðtÞþCCðtÞ ¼ CA,0þCB,0, tZ0: ð8Þ

Otherwise, when k1¼k2 the system has a different type of
solution due to the coincidence of both exponential decays. By
direct solution or using the Laplace domain (see Appendix C), it is
seen that

CAðtÞ ¼ CA,0 expð�k1tÞ, ð9Þ

CBðtÞ ¼ ðCA,0k1tþCB,0Þ expð�k1tÞ, ð10Þ

CCðtÞ ¼ CA,0½1�ð1þk1tÞ expð�k1tÞ�þCB,0ð1�expð�k1tÞÞ: ð11Þ

From here on we assume also CB,0¼0. Such formulas can be found
e.g. in Eremin (1976) and Bairamov (2003, p. 49), who presented
this solution for CB(t).

Obviously the concentration CB(t) is characterized by a
maximum over time, which is a fingerprint of the consecutive
scheme A-B-C contrary to the parallel scheme A-B, A-C. For
the latter mechanism, the kinetic model is presented as follows:

dCA

dt
¼�ðk1þk2ÞCA, ð12Þ

dCB

dt
¼ k1CA, ð13Þ

dCC

dt
¼ k2CA: ð14Þ

The solution of Eqs. (12)–(14) is

CAðtÞ ¼ CA,0 expð�ðk1þk2ÞtÞ, ð15Þ

CBðtÞ ¼ CA,0
k1

k1þk2
½1�expð�ðk1þk2ÞtÞ�, ð16Þ

CCðtÞ ¼ CA,0
k2

k1þk2
½1�expð�ðk1þk2ÞtÞ�: ð17Þ

Obviously, in this scheme there is no maximum of any of the
concentrations: CA only decreases, CB and CC only increase.

The time of the peak of CB(t) for the consecutive scheme is also
presented in the references: from

C0BðtÞ ¼ CA,0k1
�k1 expð�k1tÞþk2 expð�k2tÞ

k2�k1
¼ 0 ð18Þ

one solves

tB,max ¼

ln
k1

k2

� �

k1�k2
: ð19Þ

That this satisfies the physicality requirement tB,max40 follows
from the elementary considerations outlined in Appendix A. The
maximum value of CB is then given by

CBðtB,maxÞ ¼ CA,0
k2

k1

� �k2=ðk1�k2Þ

¼ CA,0rr=ð1�rÞ, ð20Þ

where we introduce the dimensionless ratio of rate constants
r¼ k2=k1. See Fig. 1 for the trend of this peak value as a function
of r.

When k1¼k2, relying or (9)–(11) and equating the time
derivative of CB(t) to zero, the maximum of CB(t) occurs at the time

tB,max ¼
1

k1
¼

1

k2
ð21Þ

and there is a remarkable relationship, which is not widely
known:

CBðtB,maxÞ ¼ CA,0e�1: ð22Þ

Studying this consecutive mechanism, we found it independently,
but later discovered that it was already mentioned in Kubasov
(2004). We propose to call this case k1¼k2 the Euler point E.

To our present knowledge, Eqs. (1)–(22) comprise all theore-
tical results obtained for this consecutive scheme. Presently we
shall reveal and explain some, to our knowledge as yet unknown,
properties of this very simple scheme.

2. New results on the maximum of CB

2.1. Concentration patterns and comparison of rate constants

Calculating the concentration of A at tB,max from (5) or (9),
CAðtB,maxÞ ¼ CA,0r1=ðr�1Þ when ra1, CA,0e�1 otherwise. Consequently,

ðCBðtB,maxÞ=CA,0Þ ¼ ðCAðtB,maxÞ=CA,0Þ
r: ð23Þ

This is clearly illustrated by the pattern shown on the figures: if
k1¼k2 (as mentioned) the concentrations are equal (Fig. 7); if k1ok2

then the concentration of A exceeds that of B (Fig. 9); if k14k2 then
the concentration of B exceeds that of A (Fig. 4). Looking at
experimental dependencies with these patterns, and assuming the
presented consecutive mechanism, we immediately obtain an
indication of the comparison between k1 and k2.

2.2. Observability of the Euler point

The question arises whether and if so, when the Euler point is
observed, and, more generally, when a given value ~r of k2/k1 can
be obtained through variation of the temperature T. We assume
the Arrhenius dependency of the rate coefficients (4). Solving in
these terms k2 ¼ ~rk1 for T, we find formally that

T ~r ¼
1

R

EA,1�EA,2

lnð ~rk1,0=k2,0Þ
: ð24Þ
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Fig. 1. Plot of rr=ð1�rÞ vs. 0rrr10; this is CB,max as a function of r¼ k2=k1.
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