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a b s t r a c t

This paper discusses covariance and material objectivity in continuum mechanics. The aim is to extend
the mathematical framework of constitutive relations to the four-dimensional (4D) formalism of the
General Relativity theory. First, it is demonstrated that 4D general linear or non-linear, isotropic or aniso-
tropic relations can be obtained, no matter the reference frame, such as inertial, animated with a rigid
body motion and convective or generally curvilinear, and no matter the starting point, for instance a
variation of a thermodynamic potential or a direct coupling between stress-like and strain-like tensors,
etc. Second, it is then always possible to model anisotropic behaviour, which is not always possible in
some of the 3D classical approaches. In order to demonstrate this 4D approach, different elastic relations
for different observers have been investigated analytically and numerically.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The ‘‘principle’’ of material objectivity is an established criterion
used in classical 3D mechanics, ensuring frame-indifference of
material constitutive models of continuous media [8,23,39]. Such
an approach has become essential in solid mechanics where the
ever-increasing computing power has made possible numerical
models for finite deformations of solids structures, including
dissipative effects [22]. When the motion of such structures is
considered, a rigid body motion of the matter itself and/or of the
frame of reference in which the motion is expressed imposes
constraints on the constitutive model. For instance, it has to
respect this ‘‘principle’’ of material objectivity.

The theory of General Relativity, by construction, properly deals
with space–time transformations (with or without gravity); the
covariance principle guarantees proper expression of all physical
laws in any kind of reference system, as developed and reviewed
by Landau and Lifshitz [20]. As written by Eringen in 1962, indeed:
‘‘Attempts to secure the invariance of the physical laws of motion from
the observer have produced one of the great triumphs of twentieth-
century physics. (. . .) Attempts to free the principles of classical
mechanics from the motion of an observer were resolved by Einstein
in his general theory of relativity. . .’’. We have proposed to use the

covariance principle for application in classical continuum
mechanics and demonstrated that this approach is possible and
promising. In particular, it can be shown that the four-dimensional
(4D) formalism properly distinguishes frame-indifference itself,
which is intrinsically the property of a 4D tensor, from the indiffer-
ence with a superimposed rigid body motion [35]. It can then be
concluded that the only appropriate way to define frame-indiffer-
ence is to apply the covariance principle within the scope of Gen-
eral Relativity theory, and thus to write a 4D constitutive model.

In the present work, anisotropic elastic behaviours are investi-
gated. After recalling the difficulties for finite deformations in 3D,
we show how these difficulties can be resolved by the 4D formal-
ism. The 4D tools are presented and a construction method is
shown to easily extend isotropic behaviours to anisotropic ones.
This generalization has to be done carefully, because this can be
done in a partially covariant or in a fully covariant way. It is then
demonstrated how the isotropic case can be found by using mate-
rial symmetries (reflections and rotations). Finally, numerical appli-
cations are carried out to illustrate the interest of such an approach.

2. 3D problems and 4D solutions for finite deformations

2.1. 3D problems for finite deformations

A problem occurs when considering the entities that serve to
construct 3D constitutive models for finite deformations. Indeed,
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several constraints need to be considered, for instance the indiffer-
ence with respect to the superposition of a rigid body motion. This
has to be imposed depending on whether solids or fluids are con-
sidered [11]. However, in 3D this property coincides with the
frame-indifference principle, because any rigid body can be consid-
ered as an observer in the 3D sense. Consequently, if this property
is not imposed, then the principle of frame-indifference cannot be
validated. This major problem on the material objectivity in 3D has
provoked many debates [30,31,19,18,32].

Moreover, other difficulties also appear while building 3D con-
stitutive models for finite deformations. For example, dealing with
material objectivity, choosing a correct time derivative is not a triv-
ial matter. This has been frequently discussed elsewhere [38,7,5].
Indeed, when computing time derivative without taking into
account the local material motion, certain wrong predictions can
be made. Furthermore, in 3D, many objective time rates can be
defined among countless possibilities [14,13,7]. This has two
consequences. First, among the possible time rates, some, even
objective, lead to unrealistic behaviour (see for example the
Jaumann rate under shear loads oscillating at large deformation
[10]). Second, for elastic behaviour, the use of time rates
which are not true time derivatives (i.e. not defined as true time
differentials) cannot be mathematically integrated like an
hyper-elastic model. In other words, such hypo-elastic models do
not present a reversible behaviour.

Another question raises when dealing with finite deformations
in 3D: how to choose between an Eulerian and a Lagrangean
description? This problem is complicated by the possible use of
convected coordinates for which correspondence can be estab-
lished between the components of some Eulerian and Lagrangean
tensors [38]. This means that a deeper link exists between the
two descriptions.

Finally, the Eulerian description has difficulties when dealing
with anisotropic elastic behaviour. Indeed, it is of course always
possible to link a 3D elastic strain tensor linearly to a 3D stress ten-
sor using an anisotropic stiffness tensor. However, when construct-
ing models with the representation theory [3], this leads to models,
which are not completely Eulerian anymore [38]. This can be re-
lated to a kinematic argument: the Eulerian description is not nat-
ural for solids, especially the anisotropic ones. This is also of
particular interest when considering non-linear behaviours, for in-
stance for applications to bio-materials or elastomers, etc.

2.2. 4D solutions for finite deformations

It is possible to extend the number of dimensions by including
time as an extra dimension in order to deal properly with the kine-
matics of finite deformations. The 4D formalism clearly separates
the covariance principle and the indifference with respect to the
superposition of a rigid body motion [35,34]. The latter is now a
property of the material that can be taken into account (or not),
whereas the covariance principle is intrinsically verified through
the use of 4D tensors and 4D operators.

The problems concerning time derivatives are now solved by
using the only two possible 4D derivatives: the 4D covariant deriv-
ative and the 4D Lie derivative. The former is not invariant with re-
spect to the superposition of a rigid body motion, whereas the
latter is. Other properties of these derivatives for applications to
non-relativistic transformations of continuum mechanics can be
found in [35]. These derivatives are also true derivatives that can
be properly integrated to obtain reversible elastic behaviours. This
will be addressed in a future publication.

The 4D description also encompasses both the Eulerian and
Lagrangean descriptions of material transformations (a proof can
be found in [34]). The Lagrangean case corresponds to an observer
linked to the material (i.e. to the convected frame where the

constitutive model can be described), whereas the Eulerian case
corresponds to an inertial frame for which the constitutive model
has a different expression. Nevertheless, the 4D tensorial relation
is intrinsic and corresponds to an expression which is frame-indif-
ferent or covariant, for a given model.

Anisotropic behaviour is now investigated and generalized from
isotropic elastic behaviours, for which the construction method
will be also briefly presented further.

3. Four-dimensional description of space–time

Differential geometry (also known as Ricci-calculus) proposes a
general mathematical context for the description of tensors and
the associated algebras. The present section introduces definitions
that are necessary for the rest of this work; a detailed presentation
may be found in [17,36]. Classical notions of 4D physics are also re-
viewed in order to introduce specific vocabulary and notations.
Further details concerning these subjects are proposed for example
in [27,2] where the general concepts are given, while the theory of
General Relativity applied to physical fields is presented by Landau
and Lifshits [20] and Weinberg [42].

3.1. Coordinates and their transformations

As opposed to classical mechanics point of view, space–time is
described by a four-dimensional differentiable manifold. The coor-
dinates of a point within this manifold are parameterized by a set
of four real numbers xl. This point is called an event and corre-
sponds to a given position and instant of time. The coordinates
are denoted with a common index, so that:

xl ¼ ðx1; x2; x3; x4Þ ¼ ðxi; x4Þ ð1Þ

In this work, the index notation is used and Einstein’s summation
convention is adopted. Greek indices l; m . . . run from 1 to 4 and la-
bel a four-dimensional entity. Latin indices i, j run from 1 to 3 and
label the spatial part of this entity.

Other sets of coordinates could be indifferently chosen to
parameterize the points of the manifold. Consider two possible sets
of coordinates noted xl and exl. The coordinate transformation
from xl to exl ¼ exlðxmÞ implies that:

dexl ¼ @
exl

@xm dxm ð2Þ

The matrix Kl
m ¼ @exl

@xm is the Jacobian matrix of the coordinate trans-

formation and @exl

@xm

��� ��� is the determinant of this Jacobian matrix. Clas-

sically, upper indices denote the contravariant components of the
tensor, while lower indices denote its covariant components.

3.2. Four-dimensional invariant interval

An invariant interval ds is defined as a generalized length ele-
ment, such that:

ds2 ¼ ðdz4Þ
2
� ðdz1Þ

2
� ðdz2Þ

2
� ðdz3Þ

2
¼ glm dzldzm ð3Þ

where the coordinates zl represent the 4D coordinates of an event
and zi corresponds to the classical 3D cartesian coordinates, as fur-
ther discussed in Section 4.1. This particular coordinate system is
also said to be standard, Galilean or inertial. glm is the Minkowski
metric such that:

glm �

�1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 1

0
BBB@

1
CCCA ð4Þ
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