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a b s t r a c t

Rough surfaces and interfaces appear in many situations of practical interest in physics and mechanics of
solids. When the interfaces between the constituent phases of composites are rough instead of being
smooth as assumed usually, all well-known micromechanical schemes resorting to Eshelby’s tensor
are no longer applicable to computing their effective properties. The present work proposes a two-scale
homogenization procedure aiming at determining the effective thermal properties of a two-dimensional
composite in which the curved interfaces between the constituent phases oscillate periodically and
quickly. An asymptotic analysis method is first used to homogenize a rough interface zone as an equiv-
alent interphase, and the effective thermal conductivity tensor of this interphase at the mesoscopic scale
is exactly determined. Then, by applying two micromechanical schemes, closed-form expressions for the
effective thermal properties of composites at the macroscopic scale are derived. Finally, the analytical
results obtained are compared with the relevant bounds and with the corresponding numerical results
provided by the finite element method. The two-scale homogenization procedure turns out to be accurate
and efficient.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The studies dedicated to estimating the effective properties of
inhomogeneous materials in terms of local phase properties and
their microstructure often adopt two assumptions about the inter-
faces between the constituent phases: (i) they are smooth and (ii)
they are perfect bondings. When these two assumptions hold,
micromechanical schemes resorting to the classical Eshelby’s
results about an elliptic or ellipsoidal inclusion embedded in an
infinite matrix, such as dilute, Mori–Tanaka, self-consistent and
generalized self-consistent schemes, can be applied to determine
the effective properties of inhomogeneous materials. For more de-
tails about these micromechanical schemes, the reader can refer to
the review paper of Hashin [1]. However, many situations in
practice occur where the assumption of perfect bonding or the

assumption of smooth interfaces is inappropriate. Relaxation of
the assumption of interfacial perfect bonding has been made, giv-
ing rise to a rich literature on imperfect smooth interfaces (see, e.g.,
[2,3] and the relevant references cited therein). In the context of
thermal conduction, the most widely used imperfect interface
models are Kapitza’s thermal resistance model and the highly con-
ducting interface one (see, e.g., [4,5]).

Relaxation of the second assumption of smooth interfaces has
also been made, leading to a number of studies in the fields of
physics and mechanics of solids or fluids devoted to rough surfaces
and rough perfect interfaces (see, e.g., [6–16]). In general, a surface
or an interface which is smooth at a given scale becomes rough at a
smaller scale. In the case where rough interfaces are involved, most
of the micromechanical schemes proposed in the literature for
determining the effective properties of inhomogeneous materials
fail to be valid, at least from an analytical point of view. Indeed,
as mentioned above, most of them need using Eshelby’s results
about an elliptic or ellipsoidal inclusion embedded in an infinite
matrix. These results are no long valid when the interface between
an inclusion and the matrix is rough. This observation constitutes
the main motivation of the present work. Note that the numerical
micromechanics or homogenization methods in which Eshelby’s
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results are not invoked are still valid even though rough interfaces
intervene. However, when interfaces are very rough, the numerical
methods applied to treating them may be very time-consuming.

According to the roughness amplitude of an interface or a sur-
face, the relevant problem can be analyzed either by using certain
perturbation techniques when the roughness amplitude is much
smaller than its wavelength (see, e.g., [17] and the relevant refer-
ences cited therein) or studied by applying some homogenization
approaches when the wavelength is much smaller than the ampli-
tude (see, e.g., [18–32]).

Remark that relaxation of both the interfacial smoothness and
perfect bonding assumptions seems not have been made in the
literature.

The present work is concerned with the effective conductivity
of two-dimensional composites consisting of a matrix in which
inclusions are embedded via perfect interfaces oscillating periodi-
cally and quickly about a curve. In this work, a two-scale homoge-
nization procedure is proposed to estimate the effective thermal
conductivity of these composites. First, at the mesoscopic level, a
mathematical asymptotic analysis is performed to homogenize as
an equivalent interphase an interface zone in which the rough
interface oscillates. Remarkably, the effective conductivity of the
equivalent interphase can be determined exactly. Second, at the
macroscopic level, closed-form expressions are obtained for the
effective conductivity of the composite by using the two
well-known micromechanical models, namely the coated ellipse
assemblage (CEA) and the coated circle assemblage (CCA). These
models are used to study two rough interface configurations in de-
tail. The first configuration is a rough interface exhibiting a comb
profile and oscillating along an elliptical curve. In the second
configuration, the interface possesses a saw-tooth profile and oscil-
lating along a circular curve. The corresponding analytical results
obtained by the two-scale homogenization method are finally
compared with the numerical results provided by the finite
element method as well as with the Reuss, Voigt and Hashin–
Shtrikman bounds. These comparisons confirm the validity of the
proposed two-scale homogenization method.

The paper is organized as follows. Section 2 is dedicated to spec-
ifying the setting of the problem under investigation. In Section 3,
by carrying out an asymptotic analysis, a rough interface zone is
homogenized and replaced by an equivalent interphase whose
effective conductivity is analytically and explicitly obtained. In
Section 4, the closed-form expressions for the macroscopic conduc-
tive properties of the composite under consideration are deter-
mined by using CEA and CCA. In Section 5, the derived analytical
results are compared with the relevant bounds and with the corre-
sponding numerical results obtained by the finite element method.
Finally, a few concluding remarks are given in Section 6.

2. Problem setting

We consider a domain X formed of two sub-domains Xð1Þ and
Xð2Þ perfectly bonded together at their interface C in the two-
dimensional context. Letting ðx1; x2Þ be a system of Cartesian coor-
dinates associated to an orthonormal basis fj1; j2g, we are inter-
ested in the case where C corresponds to a periodically
oscillating curve in the x1–x2 plane (see Fig. 1). To obtain a mathe-
matical characterization of C, the x1–x2 plane is parameterized by
two orthogonal curvilinear coordinates y1 and y2 such that the po-
sition vector x of any point in the x1–x2 plane is given by

x ¼ xðy1; y2Þ ¼ ½x1ðy1; y2Þ; x2ðy1; y2Þ�:

The vector tangent to the yi-coordinate curve is defined by

ti ¼
@x
@yi
¼ hif i with hi ¼

@x
@yi

���� ����

where the summation convention does not apply, hi is a metric
coefficient and f i is the unit vector tangent to the yi-coordinate
curve. Since the curvilinear coordinates y1 and y2 are orthogonal,
f1 is perpendicular to f2 so that f1 � f2 ¼ 0. The interface C between
Xð1Þ and Xð2Þ is now defined by

C ¼ x ¼ xðy1; y2Þ 2 R2 j y2 ¼ cðaÞ; a ¼ y1

�

n o
: ð1Þ

In this equation, � is a small positive parameter and cðaÞ with
a ¼ y1=� is a periodic function of period 1. Denoting the minimum
and maximum values of cðaÞ by cmin and cmax, respectively, we as-
sume that 0 < �� d ¼ cmax � cmin. This means that C is a very
rough interface oscillating periodically about the y1-coordinate
curve. In addition, it is assumed that, for any given value y2 of y2

such that cmin < y2 < cmax, equation y2 ¼ cðaÞ has two distinct real
roots a1 and a2 within a period, namely y2 ¼ cða1Þ ¼ cða2Þ with
0 6 a1 < a2 < 1.

For later use, we denote by xðcÞ the rough interface zone char-
acterized by

xðcÞ ¼ x ¼ xðy1; y2Þ 2 X j cmin < y2 < cmaxf g; ð2Þ

and by pðy2Þ the curved line defined by

pðy2Þ ¼ x ¼ xðy1; y2Þ 2 xðcÞ j y2 ¼ y2; cmin < y2 < cmax

� �
: ð3Þ

Relative to the curvilinear coordinate system fy1; y2g associated
with the orthonormal curvilinear basis ff1; f2g, the thermal con-
duction behavior of the material forming the sub-domaine XðpÞ,
with p ¼ 1 or 2, is described by Fourier’s law

qðpÞ ¼ �KðpÞ � rhðpÞ: ð4Þ

Here qðpÞ and hðpÞ stand for the heat flux and temperature fields,
respectively, and KðpÞ is the second-order thermal conductivity ten-
sor of phase p. By hypothesis, the both materials are curvilinearly
anisotropic, but may be heterogeneous along y2-direction and peri-
odically heterogeneous along the y1-direction with the same peri-
od � as the interface C, so that KðpÞðy1; y2Þ ¼ KðpÞðy1 þ �; y2Þ. In (4),
the temperature gradient rhðpÞ is calculated in the orthonormal
curvilinear basis ff1; f2g by

rhðpÞ ¼ hðpÞ;1 f1 þ hðpÞ;2 f2 ð5Þ

where the derivatives ð�Þ;1 and ð�Þ;2 are, hereafter, defined as

ð�Þ;1 ¼
1
h1

@ð�Þ
@y1

; ð�Þ;2 ¼
1
h2

@ð�Þ
@y2

: ð6Þ

The local heat flux qðpÞ satisfies the energy conservation
equation

Fig. 1. The two-dimensional domain X consists of two phases occupying the
subdomains Xð1Þ and Xð2Þ with their rough interface C oscillating periodically along
a curve characterized by y2 ¼ cðy1=�Þ.
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