
Piezoelectric composites: Imperfect interface models, weak formulations
and benchmark problems

S.-T. Gu a,c,⇑, J.-T. Liu a, Q.-C. He a,b,*

a Southwest Jiaotong University, School of Mechanical Engineering, Chengdu 610031, China
b Université Paris-Est, Laboratoire de Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée Cedex 2, France
c School of Mechanics and Materials, Hohai University, Nanjing 210098 People’s Republic of China

a r t i c l e i n f o

Article history:
Received 12 November 2013
Received in revised form 8 February 2014
Accepted 24 March 2014
Available online xxxx

Keywords:
Imperfect interface
Interphase
Piezoelectricity
Weak formulation
Composite
Extended finite element method (XFEM)

a b s t r a c t

This work is concerned with piezoelectric composites with imperfect interfaces. The general piezoelectric
imperfect interface model derived from the replacement of a piezoelectric interphase of small uniform
thickness between two bulk piezoelectric phases by an imperfect interface through an asymptotic
analysis is reformulated so as to obtain simpler compact characteristic expressions. Further, it is
exploited to deduce two particular piezoelectric imperfect interface models which include as special
cases the widely used Kapitza model, highly conducting model, elastic spring-layer model and mem-
brane-type (or Gurtin–Murdoch) model. The weak formulations for the mixed boundary value problems
of a piezoelectric composite with the interfaces described by the derived particular piezoelectric imper-
fect interface models are provided and serve as the basis for their numerical treatment by the extended
finite element method (XFEM). The analytical solutions for benchmark problems are found and can be
used for carrying out the accuracy and convergence analyzes of numerical methods such as XFEM.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

In a great number of practical situations, the interfaces between
the dissimilar phases in composites are imperfect and may greatly
affect their local field distributions and overall properties [see, e.g.,
1–4]. In the context of uncoupled phenomena such as thermal con-
duction and elasticity, three models have been mainly proposed
and developed for imperfect interfaces. In the setting of thermal
conduction, the first model is Kapitza’s thermal resistance one
which is widely adopted [5,6]. According to this model, the tem-
perature suffers a jump across an interface but the normal heat flux
is continuous and proportional to the temperature jump across the
same interface. The second model is the highly conducting inter-
face one which is adopted in studying the effective conductivity
of some composites [see, e.g., 7–9]. This model stipulates that the
temperature is continuous across an interface while the normal
heat flux presents a interfacial jump which is related to the surface
temperature gradient by the Laplace–Young equation. The third
model, referred to as the general thermal imperfect interface

model (see, e.g., [10,11]), is based on the idea of replacing an inter-
phase by an imperfect interface. In this model, both the tempera-
ture and normal heat flux suffer a jump. In addition, it is shown
that the first two imperfect interface models can be retrieved from
the third general one in a mathematically rigorous manner by
taking the interphase to be, respectively, weakly and highly
conducting [10,11].

Within the framework of linear elasticity, the counterparts of
the Kapitza interfacial thermal resistance model and the highly
conducting interface model are the spring-layer and the mem-
brane-type imperfect interface models which are widely used
[see, e.g., 1,2,12]. In a similar way, these two elastic interface mod-
els can be derived from the elastic general interface model by con-
sidering soft and stiff interphases [11,13]. From the physical
standpoint, the special interface models obtained for the cases
where the properties of the interphase present a high contrast with
respect to those of the surrounding phases are important. This is
because, on the one hand, they are helpful for getting a good
understanding of the general interface model and, on the other
hand, they are directly useful for some situations of practical
interest.

In the context of piezoelectricity, there are also three interface
models: two special interface models and one general interface
model. The first special interface model, proposed by [14], can be
called as the piezoelectric membrane-type interface model which
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can be viewed as a piezoelectric extension the well-known Gurtin–
Murdoch model [15]. According to this model, the displacement
and electric fields are continuous across an interface, while the
traction vector field and the normal electric displacement exhibit
interfacial jumps which are proportional to certain surface deriva-
tives of the displacement and electric fields. This model has been
applied in studying the size-dependent effective piezoelectric
moduli of nanocomposites [16]. The second special interface
model, referred as to the piezoelectric spring-type one, stipulates
that the traction vector and the normal electric displacement are
continuous across an interface, while the displacement vectors
and the electric field suffer interfacial jumps proportional to the
traction vector and the normal electric displacement. The effect
of piezoelectric spring-type interfaces in piezoelectric composites
has been investigated in [17,4]. The general piezoelectric interface
model was derived by [18,19] by exploiting the idea of replacing an
interphase by an imperfect interface and by an asymptotic analy-
sis. In this model, the displacement vector, the electric field, the
traction vector and the normal electric displacement field are in
general discontinuous across an interface. We observe that the
two special piezoelectric interface models described before are
proposed on a phenomenological basis while the general piezo-
electric interface model is derived in a physically sound and math-
ematically rigorous way. However, the connection between the
two special piezoelectric interface models and the general piezo-
electric interface has not been clarified.

A boundary value problem with imperfect interfaces can be
solved in general only numerically. If a finite element method is
adopted, a weak formulation of the problem is a preliminary step
toward its numerical treatment. Although a great number of works
have been dedicated to numerically simulating imperfect interface
phenomena in composites [see, e.g., 20–23], the interfacial models
used are often limited to uncoupled phenomena such as elasticity
and electric conduction. As discussed above, the piezoelectric
imperfect interface models are much more complicated. To the
best of the authors’ knowledge, the numerical treatment of piezo-
electric imperfect interfaces remains an open problem.

The objective of the present work is threefold. First, on the
basis of the recent work of Gu and He [19], it aims to present a
simple and compact coordinate-free formulation for the general
piezoelectric imperfect interface model and to rigorously derive
two special piezoelectric imperfect interface models. Second, it
has the purpose of providing weak formulations for the boundary
value problem of a piezoelectric composite in which the inter-
faces are described by either of the two special piezoelectric
imperfect interface models. These weak formulations are indis-
pensable to the numerical treatment of the problem, for example,
by the extended finite element method (XFEM). Finally, a bench-
mark piezoelectric problem is analytically solved where a
composite consisting of a circular cylindrical piezoelectric inho-
mogeneity embedded in an infinitely extended piezoelectric
matrix via an imperfect interface is under a remote anti-plane
mechanical loading and a remote in-plane electric loading. The
analytical results can be used to test the accuracy and conver-
gence rate of a numerical approach.

The paper is organized as follows. In Section 2, after specify-
ing the field equations governing a piezoelectric composite, the
general piezoelectric imperfect interface model is reformulated
so as to obtain simple and compact characteristic expressions.
From the general piezoelectric imperfect interface model, two
special ones are derived. In Section 3, the weak formulations
for a mixed boundary value problem of the piezoelectric com-
posite are given while using the special piezoelectric imperfect
interface models. Section 4 is dedicated to analytically solving
a benchmark problem. Finally, in Section 5, a few concluding
remarks are drawn.

2. Piezoelectric composites with imperfect interfaces

2.1. Governing fields equations

The composite under consideration consists of a matrix rein-
forced by inhomogeneities via imperfect interfaces. The matrix
and inhomogeneities are assumed to be individually homogeneous
and linearly piezoelectric. Precisely, their piezoelectric laws take
the following form:

rij ¼ Cijklekl �Pkijek;

di ¼ Piklekl þ Kijej;

�
ð1Þ

where rij and eij are the components of the stress and strain
tensors; di and ei are the components of the electric displacement
and electric field vectors; Cijkl;Kij and Pkij stand for the elastic,
dielectric and piezoelectric moduli, respectively. These moduli have
the following symmetry properties:

Cijkl ¼ Cijlk ¼ Cklij; Kij ¼ Kji; Pkij ¼ Pkji: ð2Þ

In addition, the strain tensor e is related to the displacement
vector u by

e ¼ 1
2
ruþrT u
h i

; ð3Þ

and the electric field vector e is derived from the scalar potential u
via

e ¼ �ru: ð4Þ

The equilibrium equations for the stress tensor and electric
displacement vector in the absence of body forces and electrical
sources state

div r ¼ 0; ð5Þ
div d ¼ 0: ð6Þ

Referring, for example, to [24], uncoupled and coupled three-
dimensional (3D) linear phenomena can be formulated in a unified
way by introducing r divergence-free vector fields Ja and r curl-free
vector fields Ea with a ¼ 1;2; . . . ; rðP 1Þ. In the context of piezo-
electricity, taking r ¼ 4 , the constitutive law (1) can be rewritten
as the following compact form

Ja ¼ LabEb or Jai ¼ LaibjEbj; ð7Þ

where the Greek letters a and b are field subscripts assuming the
values 1–4, the Latin letters i and j are space subscripts taking the
values 1, 2 and 3, and the summation convention applies to every
couple of repeated Greek or Latin subscripts. More precisely, the
following definitions are adopted:

J1i ¼ r1i; J2i ¼ r2i; J3i ¼ r3i; J4i ¼ di; ð8Þ

Eai ¼ wa;i; w ¼ ðu1;u2;u3;uÞT ; ð9Þ

½Laibj� ¼

Ci1j1 Ci1j2 Ci1j3 Pji1

Ci2j1 Ci2j2 Ci2j3 Pji2

Ci3j1 Ci3j2 Ci3j3 Pji3

Pi1j Pi2j Pi3j �Kij

26664
37775: ð10Þ

Concerning the interface between a generic inhomogeneity and
the matrix, a generalized piezoelectric membrane-type interface or
spring-type interface model will be adopted for its description.
These two models can be deduced from a general piezoelectric
interface model as will be shown in the next section.
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