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b Mănes�ti School, Dâmbovit�a County, Romania
c Faculty of Biotechnical Systems Engineering, Politehnica University, 060042 Bucharest, Romania

a r t i c l e i n f o

Article history:
Received 14 November 2013
Received in revised form 20 April 2014
Accepted 21 April 2014
Available online 2 June 2014

Keywords:
Lorentz factor model
Single crystal X-ray diffraction
Vertical divergence

a b s t r a c t

The Lorentz factor is a sensitive issue of X-ray diffraction because it is taking into account some factors
which influence the intensity of diffracted X-radiation, such as: (i) the geometry of the experiment and
also (ii) the single crystal or poly-crystals size in the irradiation case of a set of crystallites (crystalline
powder). The difficulty of the subject consists in the possibility of different interpretation of the influence
of these factors and in modeling of them. Depending on the preferential orientation of the crystals, the
relative error can be 3–10 times in comparison with the accepted classical model. The aim of this paper
is to modeling Lorentz factor for the integrated intensity, in case of vertical divergence integrated
intensity diffracted by a single crystal. The originality of paper consists in deducting expression of Lorentz
factor, expression that correct the calculated value of intensity for real experimental conditions of X-ray
diffraction, for a certain type of structural analysis.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Future design of nanomaterials and nuclear materials requires
structural materials that can withstand extreme environment
conditions. There have been a number of experimental studies to
characterize and understand the effects of radiation-induced in a
number of irradiated metal systems as well as computational
models the relations involved in the X radiation diffracted intensity
[1–4].

In the X-ray diffraction experiments, the intensity of diffracted
X-radiation is affected by 6 factors: (i) the polarization factor P(2h);
(ii) Lorentz factor, L; (iii) the structure factor F(~s); (iv) multiplicity;
(v) temperature factor (Debye–Waller), FT(s); (vi) absorption factor
[5–8].

The Lorentz–polarization factor is the most important of the
experimental quantities that control X-ray intensity with respect
to diffraction angle. This paper presents the results obtained from
the analysis of the way in which full intensity reflected from a
crystal plane is affected by the ‘‘geometry’’ experience, in case of
vertical divergence integrated intensity diffracted by a single
crystals; the results can be extended to the main types of methods

used in structural analysis, similar with results presented in the lit-
erature data [5,8,9].

When defining factors enumeration characterizing coherent
scattering of X-rays, it was assumed that the incident beam is
plane parallel and monochromatic.

In all reality experiences, there are practical limitations to the
feasibility of these conditions [5].

Geometric divergence (vertical and horizontal) of the beam
incident, the deviation from ideal monochromatism and the dif-
fraction geometry, leading to further enlargement of the widening
of the observed diffraction peaks. The observed diffraction peaks,
resulting from the expression of G2(~s), where G(~s) is the interfer-
ence function.

It is therefore necessary to find and introduce a ‘‘geometric
factor’’ to correct the calculated value of X radiation diffracted
intensity for ‘‘real’’ conditions experiences of a specific to a partic-
ular type of structural analysis.

In the following section, we will be discuss the ‘‘geometric fac-
tor’’ (Lorentz factor) in the case in which we define the integral
intensity diffracted by a crystal plane.

The Lorentz–polarization factor is an important component of
peak intensity, but it has little or no effect on peak shape
except at low diffraction angles and the Lorentz–polarization factor
is a factor whose values are controlled by the geometry of the
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instrument and the preferred orientation of crystallites within the
crystal aggregate.

The Lorentz factor is a combination of two geometrical factors
that we will deal with trigonometrically. The first factor is a formu-
lation for the volume of the crystal that is exposed to primary irra-
diation. The second one relates the number of crystals favorably
oriented for diffraction at any Bragg angle h. The Lorentz factor is
different for random powders and single crystals.

Difficulty Lorentz factor approach consists in the possibility of
different interpretation influences of these factors, as well as in
physical-mathematical modeling of these factors.

The mathematical modeling [10–16] are the scientific way of
proposal and implementation of technology and instrumental
analysis methods based on previously models tested in laboratory.
So the mathematical formula can make use of hypotheses simplifi-
cation proposals more or less justified as a result of the work of
specialist [5,8,17–22].

Depending on the accuracy level and preferential orientation,
we can be made relative errors of 3–10 times higher than the
accepted classical model. For this reason, modeling of Lorentz
factor is a subject which deserve a special attention, and in the con-
text of this work, we will present an own mathematical modeling
of Lorentz factor.

In accordance with the specialty literature [23–30] the dif-
fracted intensity by a crystallite Ic(~s) irradiated with non-polarized
monochromatic beam, in direction ~u has the expression:

Icð~sÞ ¼ Ieð0Þ �
1þ cos2 2h

2
F2ð~sÞ � G2ð~sÞ ð1Þ

where ~s ¼ ~u�~u0
k , ~u0 is the incident beam direction; ~u the diffracted

beam direction; and k = wavelength, and Ie(0) is the incident beam
intensity, Pð2hÞ ¼ 1þcos2 2h

2 the polarization factor, F(~s) is the factor
structure, and G(~s) interference function.

2. Theoretical aspects

To estimate the number of cells in a crystallite will consider a
cubic crystallite of side 0.1 lm, which is the lattice parameter of
approx. 5 Å. The crystal will contain 200 unit cells on each side,
i.e. 8 � 106 unit cell. If considered crystal Ic(~s) is measurable only
for ~s, the vicinity of a vector ~H of reciprocal network care
Fð~HÞ– 0. In this case~s can be written as:

~s ¼ H
!
þ~e ð2Þ

where H
!
¼ h1

~b1 þ h2
~b2 þ h3

~b3 and~e ¼ e1
~b1 þ e2

~b2 þ e3
~b3(h1 h2 h3) –

Miller indices of crystallographic planes,

~b1 ¼
~a2x~a3

X
; ~b2 ¼

~a3x~a1

X
; ~b3 ¼

~a1x~a2

X

where ~aix~aj is the multiplication product of the vectors,
X =~a1ð~a2x~a3Þ is the unit cell volume of the crystal or direct network.

G ¼ sinðpN1s1a1Þ
sinðps1a1Þ

� sinðpN2s2a2Þ
sinðps2a2Þ

� sinðpN3s3a3Þ
sinðps3a3Þ

The term G is also known in the literature as interference func-
tion [31].

N1, N2, and N3 are the number of unit cells along a1, a2, and a3

directions.
From the condition to cancel the interference function i.e. when

it results from:
pNisiai ? ±p results:

sin2 pNi~si~aið Þ
sin2 p~si~ai

¼ sin2 pNiei

sin2 pei

ð2:aÞ

with i = 1–3,

Ni are the number of unit cells along the ai direction (i = 1, 2 or

3), so that the interval � 1
Ni
; 1

Ni

h i
or domain of �� is about 1.25 � 10�7

times smaller than the volume of the cube from respectively space,
practically meaning that is a ‘‘node’’ point. It has been shown that
G2(~s) term plays a Dirac function better as the number of unit cells
in the crystal is higher [32].

If the number of crystals from the crystallite increases to
approx. 2000 cells per side, i.e. about 1010 cells, then the domain
of ~� is reduced practically to a point. This led to the concept of
Ewald sphere (Fig. 1) that diffracted beams can be obtained only
when there is a vecor~s of mutual network which is identical to that
node must lie on the Ewald sphere with radius 1/k (Fig. 1a and b).

Basically, if any node of the crystal does not intersect the Ewald
sphere, then you cannot get any diffracted beam.

In order to prevent this, the crystal can rotate or oscillate about
a position (axis) so that some components can end up in positions
of diffraction, for example reach the Ewald sphere. All nodes that
can generate diffracted beams are found in so-called sphere of
inclusion that has radius 2/k.

3. The approached method

3.1. Experimental procedure

We used for experiments and modeling a modify diffractometer
DRON3, equipped supplementary with computerized data acquisi-
tion and processing data of diffraction. In Fig. 2 is presented the
image of the diffractometer goniometer DRON 3.

In general, the diffractometers comprises the following parts:
the nuclear, mechanical, hydraulic, electric and electronics parts
and the computerized data acquisition and processing of diffraction.

Fig. 1. Schematic representation of Ewald sphere with reciprocal lattice: (a) 2D
representation; (b) 3D; [33].
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