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a b s t r a c t

We present a phenomenological approach to describe the evolution of anisotropy during plastic deforma-
tion. In the presented model, anisotropy evolution is described in terms of both distortional hardening
and variation of Lankford coefficients. A non-associated flow rule (non-AFR) based Yld2000-2d aniso-
tropic yield model is employed in which separate yield function and plastic potential are considered
which attributes excellent accuracy and flexibility to the model. However, as is the case for the majority
of phenomenological anisotropic models, the non-AFR Yld2000-2d model preserves the initial anisotropy
during the entire plastic deformation. To include evolutionary characteristics in the model, the shape of
plastic potential and yield function should be sensitive to plastic deformation. Therefore, we use polyno-
mial functions to describe the pattern present in the evolution of plastic potential and yield functions. The
proposed model was evaluated based on experimental results of interstitial free DC06 deep drawing steel.
Despite its simplicity, the proposed evolutionary non-AFR Yld2000-2d model shows excellent accuracy in
predicting the evolution of Lankford coefficients and yield stresses during plastic deformation.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Aggregates of single crystals constitute the crystallographic
structure of most metals. For a single crystal, considerable anisot-
ropy of mechanical properties, such as different yield stresses at
different orientations, is observed. The mechanical anisotropy at
crystal level turns into isotropy at macro-scale level in a polycrys-
talline aggregate with sufficient random crystal orientation distri-
butions [1]. In other words, the average behavior of all single
crystals represents the total material behavior. Thus an isotropic
yield function seems to be a sufficient assumption for the descrip-
tion of macroscopic behavior in finite element simulations. How-
ever, sheet metals undergo severe plastic deformations during
manufacturing processes as cold rolling. This introduces a prefer-
ential orientation to the grains. Therefore isotropy is no longer
the appropriate assumption to represent the mechanical behavior
of a rolled sheet metal. Moreover, the anisotropic behavior has

been known to have a great influence on the shape of the specimen
after the deformation. Earing at the rim of a deep drawn part is a
typical example of distinct anisotropic behavior. According to Yoon
et al. [2,3], there is a straightforward relation between on the one
hand profile and number of peaks of the Lankford coefficients dis-
tribution between 0� and 90� orientations and on the other hand
number and profile of ears in a deep drawn cup. Furthermore, they
described the connection between directional yield stress distribu-
tion and the earing profile. This indicates why an accurate predic-
tion of directional Lankford coefficients and yield stresses by an
appropriate anisotropic constitutive model can be essential.

Focusing on constitutive models in general and more specifi-
cally on the yield function, there are two major approaches to de-
scribe this behavior for polycrystalline materials. The first
approach is crystal plasticity and the second one is the phenome-
nological approach. In the first approach, the behavior of one grain
or a distribution of grains around a specific orientation is used to
describe the polycrystalline behavior [4–6]. In the phenomenolog-
ical approach, on the other hand, the average behavior of all grains
determines the global material behavior. According to Barlat et al.
[7], using a phenomenological yield function has advantages over
its microstructure-based counterpart mainly due to its easier
implementation in FEM leading to fast computation, description
of global anisotropy and easy adaptation for different materials.
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Many phenomenological yield functions have been successfully
implemented in finite element codes to simulate the isotropic or
anisotropic behavior of a material. In general they make use of dif-
ferent combinations of yield stresses and Lankford coefficients (r-
values) to represent a multi-dimensional surface determining the
transition between elastic and plastic deformation. The foundation
of most anisotropic yield functions is based on the Associated Flow
Rule (AFR) hypothesis which states that the yield function is also
the potential for plastic strain rate. In other words, AFR reflects
the normality rule based on which the gradient of a continuously
differentiable yield function determines the direction of plastic
strain rate. Accordingly, under the assumption of AFR and in the
light of material orthotropy, starting from Hill’s quadratic anisot-
ropy model [8], various phenomenological yield functions have
been proposed to describe the initial anisotropy of metallic sheets.
Examples are Karafillis and Boyce [9], Barlat et al. [10–13], Cazacu
and Barlat [14,15], Bron and Besson [16], Banabic et al. [17], Vegter
and van den Boogaard [18], Cazacu et al. [19,20] and Hu [21]. In or-
der to accurately describe both yielding and plastic flow behavior
of sheet metals, the coefficients of the above anisotropic yield func-
tions commonly need to be optimized explicitly or iteratively from
experimentally determined tensile, shear or bi-axial yield stresses
and r-value coefficients. Except for the model of Hu [21], none of
the stated models are in their original formulation able to take dis-
tortional anisotropy into account.

During the last decade, more attention has been paid on the
development and implementation of non-AFR for metal plasticity.
The non-AFR removes the artificial constraint of equality of plastic
potential and yield function enforced by the AFR assumption. Con-
sequently, two separate functions for yield and plastic potential are
adopted. In other words, the yield function and plastic potential
respectively describe the elastic limit and plastic strain rate direc-
tion independently. Therefore, a larger number of experimental
data can be used for calibration of each yield function and plastic
potential parameter resulting in a better agreement between sim-
ulation and experimental data, e.g. better prediction of yield stress
and r-value at additional orientations.

A limited number of studies have been published on using non-
AFR for metal forming applications. For instance, Stoughton [22]
proposed a non-AFR model based on Hill 1948 quadratic formula-
tion that accurately predicted both direction dependent r-values
and yield stresses in rolling, transverse and diagonal directions.
Continuing his previous model, Stoughton with Yoon [23] devel-
oped a pressure sensitive non-AFR model that predicted the

strength differential effect observed in tension and compression
tests. Cvitanic et al. [24] developed a non-AFR model based on both
Hill 1948 quadratic and Karafillis and Boyce non-quadratic yield
functions combined with isotropic hardening, which showed an
improved prediction of cup heights for deep drawn cups. Stough-
ton and Yoon [25] proposed a non-AFR based anisotropic harden-
ing model that resulted in excellent predictions of hardening
curves for rolling, transverse and diagonal directions and for the
balanced biaxial stress state. Improvements in prediction of cup
height and springback of a U-bend specimen using non-AFR with
mixed isotropic-kinematic hardening have been reported by
Taherizadeh et al. [26]. Recently, Safaei et al. [27] proposed the
combination of a general non-AFR yield model with a recently pro-
posed mixed hardening law which adds the prediction of perma-
nent softening into the capabilities of the classical Chaboche [28]
hardening model. Moreover, they showed that the same order of
accuracy as obtained by the Yld2004-18p model could be achieved
by the non-AFR Yld2000-2d model.

Distortional anisotropy associated with texture evolution can
be described as the combination of changes in the shapes of both
yield and plastic potential surfaces during plastic deformation.
The evolution of the yield surface shape, which is commonly re-
ferred to as distortional hardening, represents the distortional
anisotropy if only AFR is considered. For example, distortional
hardening was reported by experimental results of Khan et al.
[29]. As discussed earlier, there is a relation between earing profile
in a cylindrical deep drawn cup and the distribution of in-plane
Lankford coefficients and yield stress ratios. Different studies vali-
dated the sensitivity of the cup profile to the shape of yield func-
tion and plastic potential [3,27,30]. Moreover, it has been
reported that the prediction of localized necking in sheet metals
is quite sensitive to the shape of the yield surface [31,32]. Consid-
ering all the above, final shape and failure of deep drawing prod-
ucts are not only influenced by the initial, but also by the
subsequent shapes of plastic potential and yield surfaces during
deformation.

Different attempts have been made to model such distortional
hardening effect. For instance, Feigenbaum and Dafalias [33] and
Pietryga et al. [34] proposed distortional hardening models based
on an evolving fourth order tensor. Plesek et al. [35] discussed
the convexity of the model proposed by Feigenbaum and Dafalias
[33]. Wang et al. [36] proposed a distortional hardening model that
captures hardening stagnation after a load reversal as well as
cross-hardening after orthogonal loading-path changes. A new

Nomenclature

a1�8 parameters of Yld2000-2d model
b parameter of Voce isotropic hardening law
c weight coefficient in combined Swift-Voce hardening
E Young’s modulus
�ep equivalent plastic strain
ep

11 longitudinal plastic strain
ep plastic strain tensor
�ep parameter of Swift isotropic hardening law
f yield function (associated flow rule)
fy yield function (non-associated flow rule)
fp plastic potential (non-associated flow rule)
F yield criterion
F11 uniaxial tensile load
k parameter of Swift isotropic hardening law
k plastic multiplier factor
m parameter of Yld2000-2d model (6 for BCC and 8 for FCC

metals)

m first order gradient of the yield function
t Poisson’s ratio
n parameter of Swift isotropic hardening law
n first order gradient of the plastic potential
Q parameter of Voce isotropic hardening law
R parameter of Voce isotropic hardening law
rh r-value at h degrees orientation w.r.t. rolling direction
rb r-value coefficient at balanced biaxial state
r Cauchy stress tensor
r0 true stress in rolling direction
rh initial yield stress at h degree orientation w.r.t. rolling

direction
rb initial yield stress at balanced biaxial state
riso isotropic hardening function
h loading direction w.r.t. rolling direction
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