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a b s t r a c t

The convergence behavior of the recently developed iterative self-consistent embedded cell method for
the determination of the effective properties of composite materials has not been analyzed in detail up to
now. In this contribution, we prove it to be unconditionally stable and to converge to the effective mac-
roscopic value ± small error. This error is found to be inherent to the method and is attributed to the pres-
ence of the direct interface between the micro- and macro-world in the same model. Furthermore, we
derive a lower bound of the amount of iterations till convergence and show it to be insensitive to the
above error.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Presently, there are ever increasing number of approaches to
numerical analysis of materials’ properties. For an excellent intro-
duction into the topic one can consult Zohdi and Wriggers [1].
These approaches differ from each other mainly due to differences
in the available data and the purpose of the analysis. For example, a
microstructural data obtained as a three-dimensional image (like
MRI, ultrasound or X-ray computer tomography), may lead to a
voxel-based approach [2,3]. On the other hand a well defined, a pri-
ori known microstructure may be analyzed with a unit cell model
of an idealized segment [3–5]. To investigate the possible damage
development mechanism one may need to include cohesive zone
elements [6–8] or any other appropriate technique.

However regardless of the data-purpose combination, all these
methods share one common requirement – the analyzed property
must be recovered as a relationship between the applied load
(tractions, stresses, temperatures, etc.) and the obtained reactions
(displacements, strains, etc.). In other words a boundary value
problem must be solved. This task is commonly accomplished with
the aid of the finite-element method. Unfortunately, the obtained
results may depend on the applied boundary conditions. In partic-
ular, there exists a strict hierarchy, which can symbolically be ex-
pressed as CKUBC > CSUBC. Here C denotes a resulting stiffness
tensor and the subscripts stand for ‘Kinematic Uniform Boundary

Conditions’ (i.e. prescribed uniform displacements) and ‘Static
Uniform Boundary Conditions’ (i.e. prescribed uniform tractions).
Extensive studies on the boundary conditions effects, the proof of
the described hierarchy and sub-hierarchies of mixed boundary
conditions can be found in [9–11].

To reduce the interaction between the boundary conditions and
the analyzed microstructure, Dietrich et al. [12] have developed
the embedded cell model for microstructures which are periodic
in loading direction. The model was subsequently extended to
non-periodic two-dimensional [13–15] and three-dimensional
composites [14]. In this model, the analyzed specimen (the cell)
is surrounded by a layer of ‘equivalent’ material. The properties
of the equivalent material are determined in an iterative self-con-
sistent manner and as soon as these converge, the properties of the
inner cell are obtained by averaging the stresses and strains in the
cell.

Dong and Schmauder observe later that ‘‘If the dimension of the
embedding composite is sufficiently large compared to the embed-
ded cell, the external geometry boundary conditions introduced
around the embedding composite are almost without influence
on the composite behavior of the inner embedded cell’’ and also
‘‘It has been found from systematic studies over a wide parameter
range that convergence to the final stress strain curve of the com-
posite is independent on the initial mechanical behavior of the
embedding composite’’ [16]. In other words, the method should
be insensitive, neither to the initial guess, nor to the boundary con-
ditions. The above observation seems to be never proven analyti-
cally. The present work aims to fill this gap.
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It shall be noted that recently a different implementation of the
iterative self-consistent homogenization was developed [17],
which is based on two separate finite-element models – a fine het-
erogeneous and a coarse homogeneous. The properties of the
coarse model are iteratively improved to match the response of
the fine heterogeneous. However since the models are separate,
the method is not a typical self-consistent one. Moreover,
since the boundary conditions must be applied directly to both
models, the method is not immune from the associated boundary
effects.

2. A formal proof of convergence

Without limiting the generality of the foregoing, we assume
that the required property is the stiffness tensor C� of some com-
posite material. Let us also assume that the microstructure can
be represented as a unit cell (not necessarily periodic). Surround-
ing this cell with a layer of some homogeneous material we obtain
the embedded cell model, Fig. 1.

To compute the stiffness of a unit cell one applies a series of six
prescribed displacement boundary conditions. The resulting re-
sponses fill the corresponding six columns of the stiffness tensor.
Note that the boundary conditions in our case are applied to the
added outer layer and not to the original unit cell. It can be ex-
pected that in case the stiffness tensor of the wrapping material
CW is exactly the same as the effective stiffness of the original com-
posite CC, the wrapping material will not affect the overall behav-
ior. In reality, the stiffness of the added phase differs, since the
effective stiffness of the original composite is not known a priori.
However, the resulting total effective stiffness (original + added)
CE will be always closer to CC than CW to CC i.e.

kCW � CCk > kCE � CCk ð1Þ

For the purpose of measuring the ‘distance’ between the matri-
ces (here tensors in matrix form) we use the Frobenius norm [18],
defined as

kAk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðAATÞ

q
ð2Þ

Consequently, each subsequent iteration improves the initial
guess by substituting the result of the previous step into the guess
of the next one. The iterative procedure can be outlined as:

Algorithm 1. Iterative homogenization procedure

Step 1: guess the initial stiffness tensor for the added phase
(CW

0 )
Step 2: find the effective stiffness of the resulting composite

(CE
i )

Step 3: if the stopping criterion is fulfilled – stop. Else,
Step 4: update the guess (CW

i ¼ CE
i�1)

Step 5: repeat steps 2–4 until the stopping criterion is
fulfilled.

The first three iterations are illustrated in Fig. 2 for the case
kCCk > kCWk.

Since Voigt and Reuss bounds, depicted as continuous lines in
Fig. 2, are absolute bounds for both analytical homogenization
and numerical alike, any homogenization result must lie within
these bounds. Clearly, the closer the results of each iteration to
the ‘target’ value, the faster and the easier the convergence. It fol-
lows that the most unfavorable (conservative) situation is when
the iteration results stay always on one of the bounds. Thus, to
prove that these iterations converge, we need to show that (i) iter-
ations, resulting in values on Voigt bound and (ii) iterations, result-
ing in values on Reuss bound, both converge. Finally it is necessary
to show that both (i) and (ii) converge to exactly the same result.

Let us start with the (i) – the Voigt bound. The first iteration is
given by

CE
1 ¼ vCCC þ vWCW

0 ð3Þ

where the zero index denotes the initial guess for the equivalent
phase, and 0 < v < 1 is the volume fraction, defined as the ratio be-
tween the volume of the phase and the total volume of the sample.
Consequently,

vC þ vW ¼ 1 ð4Þ

Volume fractions of the phases do not change during the itera-
tions. The kth iteration is then

CE
k ¼ vCCC þ vWCW

k�1 ð5Þ

By substitution of the k � 1 first iterations into the kth iteration,
(5) can be written as

CE
k ¼ vCCC

Xk�1

n¼0

ðvWÞn þ ðvWÞkCW
0 ð6Þ

where a lowercase upper index denotes power. To complete the
proof we find CE

1:

lim
k!1

CE
k ¼ vCCC lim

k!1

Xk�1

n¼0

ðvWÞn
 !

þ CW
0 lim

k!1
ðvWÞk ð7Þ

However, since "v 2 [0,1), limk?1vk = 0 and
limk!1

Pk
n¼0vn

� �
¼ 1

1�v, Eq. (7) simplifies to

lim
k!1

CE
k ¼

vCCC

1� vW ð8Þ

Recalling that 1 � vW = vC, we complete the first part of the
proof:

lim
k!1

CE
k ¼ CC ð9Þ

A proof for the (ii) – the Reuss bound, is identical, if one uses
compliance instead of stiffness. Since

C�1 � S ð10Þ

the Reuss bound for the first iteration can be written as

S
E
1 ¼ vCS

C þ vWS
W
0 ð11Þ

and the rest of the proof follows Eqs. (5)–(8). For this reason, we
show only the end result:

lim
m!1

SE
m ¼ SC ð12Þ

Note that we have made no assumptions regarding the nature
of the initial guess. It means the convergence is guaranteed for
any guess no matter whether it is isotropic or anisotropic and no
matter how ‘far’ it is from the final value. Note also that there
are also no restrictions on the amount of the added wrapping layer.Fig. 1. A unit cell surrounded by an additional phase.
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