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a b s t r a c t

We review physical, mathematical, and numerical derivations of the binary Cahn–Hilliard equation (after
John W. Cahn and John E. Hilliard). The phase separation is described by the equation whereby a binary
mixture spontaneously separates into two domains rich in individual components. First, we describe the
physical derivation from the basic thermodynamics. The free energy of the volume X of an isotropic sys-
tem is given by NV

R
X½FðcÞ þ 0:5�2jrcj2�dx, where NV, c, F(c), �, and rc represent the number of molecules

per unit volume, composition, free energy per molecule of a homogenous system, gradient energy coef-
ficient related to the interfacial energy, and composition gradient, respectively. We define the chemical
potential as the variational derivative of the total energy, and its flux as the minus gradient of the poten-
tial. Using the usual continuity equation, we obtain the Cahn–Hilliard equation. Second, we outline the
mathematical derivation of the Cahn–Hilliard equation. The approach originates from the free energy
functional and its justification of the functional in the Hilbert space. After calculating the gradient, we
obtain the Cahn–Hilliard equation as a gradient flow. Third, various aspects are introduced using numer-
ical methods such as the finite difference, finite element, and spectral methods. We also provide a short
MATLAB program code for the Cahn–Hilliard equation using a pseudospectral method.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we review physical, mathematical, and numerical
derivations for the binary Cahn–Hilliard (CH) equation, and we
provide a short MATLAB program code for the equation using a
pseudospectral method. The CH equation describes the temporal
evolution of a conserved field that is a continuous, sufficiently dif-
ferentiable function of position. The evolution of the phase separa-
tion is due to the non-Fickian diffusion driven by gradients in
chemical potential. It was originally proposed to model the spinod-
al decomposition of a binary A–B system at a fixed temperature, for
which an initially homogeneous system with a uniform composi-
tion of c, the mole fraction of component B, spontaneously decom-
poses into two phases with the same crystal structure, but with
different compositions. In this case, the spatial distribution of the
two phases during decomposition could be described by the com-
position field, c(x, t), which is a continuous, differentiable function
of position (x) and time (t) [1]. The temporal evolution of the spin-
odal decomposition in the system is governed by the CH equation
[2]:

@c
@t
¼ r � ðMrlÞ ¼ MDl; ð1Þ

where M is the constant mobility. In general, M is the tensor-valued
variable mobility [3]. Here l is the local chemical potential defined
as

l ¼ F 0ðcÞ � jDc: ð2Þ

In Eq. (2), F(c) is the Helmholtz free energy density per molecule
of the homogeneous system with composition c, and j is a positive
constant often called the gradient energy coefficient (j = �2), which
is related to the interfacial energy.

The essential concept underlying the CH equation is that the
interface between two phases, say a and b phases, is not sharp,
but has a finite thickness in which the composition c changes grad-
ually. For instance, when the binary system approaches near the
equilibrium state composed of a phase with c ¼ ceq

a and b phase
with c ¼ ceq

b > ceq
a , the domains where cðx; tÞ ¼ ceq

a and cðx; tÞ ¼ ceq
b

correspond to the a and b phases, respectively, whereas the region
where c(x, t) varies gradually from ceq

a to ceq
b represents the inter-

face between the a and b phases, as shown in Fig. 1.
One of the most striking advantages of using the CH equation

for simulating microstructural evolution is the avoidance of expli-
cit tracking of the interface. This concept of a diffuse interface has
been adopted to model various physical phenomena involving
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moving interfaces, in which the order parameter, or phase field /
(x, t), instead of the composition field c(x, t), is introduced to de-
scribe the spatial distribution of the entire microstructure of a sys-
tem. If the overall phase fraction in the system is conserved during
evolution, as in the coarsening phenomenon of a precipitate phase
in a matrix phase, the governing equation for the temporal equa-
tion of /(x, t) is given by a CH-type equation similar to Eq. (1).

Some examples of applications of the CH equation are the phase
separation of binary and ternary liquid mixture [4,5], multi-phase
fluid flows [6–9], Taylor flow in mini/microchannels [10], two-layer
flow in channels with sharp topographical features [11], spinodal
decomposition with composition-dependent heat conductivities
[12], phase decomposition and coarsening in solder balls [13],
the thermal-induced phase separation phenomenon [14], the evo-
lution of arbitrary morphologies and complex microstructures
such as solidification, solid-state structural phase transformations
[15–18], meta-stable chemical composition modulations in the
spinodal region [19], modeling of martensitic phase transformation
[20], grain growth [21], pore migration in a temperature gradient
[22], image inpainting [23,24], and tumor growth [25,26].

The remainder of this paper is organized as follows. Section 2
describes a detailed physical derivation of the CH equation using
basic thermodynamics. Section 3 reviews a mathematical deriva-
tion of the CH equation as a gradient flow and mathematical anal-
ysis of the equation. Section 4 presents several numerical methods
up to now for solving the CH equation. Finally, Section 5 states the
conclusions.

2. Physical derivation

In this section, the CH equation is derived along the lines of
some previous studies [1,27,28] by using basic thermodynamics.
Considering a binary, regular solid solution at constant tempera-
ture, we first derive the form of the Helmholtz free energy density,
F(c), for a homogeneous system. Then, we derive the local free en-
ergy density for a compositionally inhomogeneous system, so as to
obtain the total free energy of an inhomogeneous system having
volume V, with F as a functional of c(x, t). The local chemical poten-
tial, l, which must be uniform throughout the system in equilib-
rium, is defined as the variational derivative of F and the mass
flux J is proportional to the minus gradient of l. Finally, the CH
equation is obtained by substituting the constitutive equation be-
tween J and l into the continuity equation for mass conservation.
We denote the free energy of a domain bounded by X in
Rd ðd ¼ 1;2;3Þ, as NV

R
X½FðcÞ þ 0:5�2jrcj2�dx. Using the usual con-

tinuity equation, we obtain the CH equation. A detailed descrip-
tions is provided below. The following derivations have been
obtained in previous studies [1,27,28]. First, we derive the form
of F(c), the free energy per molecule of a homogenous system.

2.1. Free energy of a homogeneous system

For a simple and closed system to be in equilibrium at fixed
temperature (T) and volume (V), its Helmholtz free energy F must
be minimized. By definition, the Helmholtz free energy of a system,
F, is given by F = E � TS, where E and S are the internal energy and
entropy of the system, respectively. In general, the thermodynamic
properties of a solid solution will include a combination of its con-
figurational, vibrational, electronic, and magnetic properties. For
example, consider the process for preparing a binary A–B solid
solution by mixing pure A and B at a fixed temperature. This mix-
ing process will, in principle, result in not only configurational and
vibrational changes, but also electronic and magnetic changes in
each atom. For simplicity, by assuming that pure A and B have an
equal molar volume and exhibit no changes in molar volume when
mixed, only the configurational contributions will be taken into ac-
count for investigating the changes in thermodynamic properties
during the mixing process.

Consider one mole of a binary solid system composed of NA

atoms of A and NB atoms of B. The overall composition of the sys-
tem is given by the mole fraction of component B, c, defined as
c = NB/(NA + NB) = NB/Na, where Na is Avogadro’s number
(6.023 � 1023). When the NA atoms of A and NB atoms of B are ran-
domly mixed at a fixed temperature T, the binary solid mixture is a
homogenous solid solution with a uniform composition c. Thus, we
consider the homogenous solid solution as a regular solution,
assuming random mixing of components A and B while accounting
for the difference in the chemical affinity between A and B from
those between atoms of the same type. In order to obtain the molar
Helmholtz free energy of the regular solution, as shown in Fig. 2,
consider the isothermal mixing process of 1 � c moles of pure A
and c moles of pure B. The molar Helmholtz free energy of the sys-
tem before mixing, F0, is the weighted sum of those of the pure
components, F0

A and F0
B, and is given by

F0 ¼ E0 � TS0 ¼ ð1� cÞF0
A þ cF0

B, as shown in Fig. 3. The mixing pro-
cess alters the atomic configuration of A and B in the system, lead-
ing to changes in the internal energy and entropy, i.e., DEmix and

Fig. 1. Two phase microstructure with order parameter c.

Fig. 2. Free energy of mixing. Before mixing: F0 ¼ cAF0
A þ cBF0

B , after mixing:
Fmix = F0 + DFmix.

Fig. 3. Variation in the free energy F0 before mixing with alloy composition c.
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