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It has been shown with the help of first-principle based calculations that the occurrence of stacking fault
(SF) changes the density of nickel. Calculations, based upon a twelve {11 1}-plane supercell of face-cen-
tered-cubic (fcc) nickel show that the stacking fault energy in the case of “conventional” stacking is
higher by ~2 mJ/m? than that of the supercell having an appropriate dilation along the fault-plane nor-
mal. The {111}-type stacking fault energy of fcc-Ni, 136.683 mJ/m?, has been calculated using
4.09746 x 10° mm?/mm?> SF density, which has resulted in the decrease in the bulk density of fcc-Ni
by 0.0895%. This approach of relaxation of a structure with stacking faults along the plane normal may
be extended to calculate more accurate generalized stacking fault and to measure the lattice distortion
due to various values of defect-densities.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

It is long known that crystal defects, which are invariably pres-
ent even in high purity metal, are responsible for the difference be-
tween the measured and the theoretical density of a material [1].
In principle, the change in overall volume, arising from the distor-
tion produced by the defects is reflected in the difference in densi-
ties. As per the continuum theory of elasticity, the volume change
is measured from the summation of principal components of the
strain tensor. However, the inability of this continuum crystal elas-
ticity to describe the lattice distortion in the proximity of a defect
renders it ineffective for making an accurate estimate of this
distortion.

Although, density functional theory (DFT) based ab initio calcu-
lations are able to solve a wide range of structural problems, care-
ful selection of several computational parameters is required to
ensure the efficacy of the calculation. Proper choice of exchange
correlation functional, k-mesh for Brillouin zone integration, cutoff
for plane wave and kinetic energy are important in achieving the
desired accuracy for pseudo-potential and for projector augmented
wave (PAW) based methods. Moreover, spin-polarized calculation
may be necessary for the elements with electrons in d- & f-shell.
Also, depending upon the preference for either precise measure-
ment of stress or total energy, typical methods for treating the par-
tial occupancies for band structure calculation should be chosen.
For example, the linear tetrahedron method with Bl6chl [2] correc-
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tion formula is required for obtaining high precision in the calcula-
tion of total energy.

A way to assess the significance of a defect is to measure the en-
ergy associated with it. In the ab initio based modeling this is usu-
ally done by calculating the difference in energies associated with
the perfect structure and the structure with the relevant defect.
Ideally, this should ideally be done through the comparison of
the energies of a perfect structure and that of an infinitely large
structure with the desired defect. However, it is a common practice
in the ab initio packages to use periodic boundary condition (PBC),
where a finite size supercell is repeated infinitely, leading to the
calculation of energy associated with a typical defect density
rather than that of single defect. Since, the PBC creates a situation,
where the original defect in the supercell interacts with its images,
some contribution from this in the total energy calculation is
unavoidable depending upon the field associated with the defect.
This compels one to consider a large supercell so that defect and
its image, when repeated due to PBC are separated by a distance
that is long enough to reduce the contribution in the total energy
below a certain level of accuracy. Hence, there is always a tradeoff
between the requirement of a large supercell to achieve a low de-
fect density and of lowering the computation cost by minimizing
the number of atoms. To optimize the number of atoms in the
supercell and the desired accuracy, maximum possible distance
should be considered in one direction between the defect and its
image but minimum possible distance in two other directions,
where periodicity of the bulk would be maintained when repeated
using PBC. In this report, a perspective for computing the lattice
dilation due to the stacking fault (SF) has been discussed, and the
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same is applied for the case of pure nickel. This has brought out a
general methodology for calculating the contribution of a certain
defect density in changing the volume of the supercell vis-a-vis
the theoretical density of the material.

2. Computational methodology

Spin-polarized, plane-wave based first principles calculations
have been employed in the frame work of density functional the-
ory within the generalized-gradient-approximation (GGA), param-
eterized by Perdew-Burke-Ernzerhof (PBE) [3,4] scheme, as
implemented in the Vienna ab initio simulation package (VASP
5.2) program [5-7]. The spin-polarized, ion-electron interaction
has been incorporated using PAW potentials [8,9] as supplied in
the VASP database.

In order to achieve a precision better than 10~ eV per atom in
the calculation of total energy, the optimized cutoff for plane wave
and kinetic energy were taken to be 1050 eV and 540 eV, respec-
tively, in order to accurately calculate the small energy differences.
These optimized cutoffs were about 1.5 times the default values
in the corresponding PAW potential. Brillouin zone integration
has been done using corrected tetrahedron method [2] with I'-cen-
tered k-meshes of 23 x 23 x 23 for optimizing the unit cell of nick-
el and 23 x 13 x 3 k-meshes for the static energy calculations of
twelve (111)-planes bulk and SF-structures.

To optimize the lattice parameter of face-centered-cubic (fcc)
Ni, unit cells with nine different lattice parameters around the ten-
tative optimum value have been created. Static energy calculations
on these structures have been carried out using VASP. Equation of
state, as suggested by Murnaghan [10] and Birch [11], henceforth
called BM3, has been used to obtain minimum values of energy
(Eo) and volume (V). The BM3-fitted Vj, so obtained, has been used
as an initial value for further optimization over volume in order to
achieve true minimum in the energy. This optimized lattice param-
eter has been used for constructing the supercells, which are used
for calculating the total energies of bulk and of SF.

Input structure comprising 24 atoms has been created by stack-
ing 12 (111)-planes having three orthogonal vectors in directions,
[110], [112] and [111]. When viewed from a (111) direction,
atomic arrangements on the (111)-type ABC planes of Ni appear
like the arrangement depicted in Fig. 1, which has been illustrated
using XCRYSDEN [12]. Hence, based on the optimized lattice
parameter, the dimensions of the supercell are set to be one
(110)-plane spacing in the x-direction ([110]), d(1 10y, two (112)-
plane spacing in the y-direction ([112]), 2d(112), and twelve
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Fig. 1. Positions of atoms on the (111) planes of Ni within the supercell when
viewed from [11 1] directions. A’s, B's and C’s correspond to positions of atoms in A-
plane, B-plane and C-plane, respectively.

(111)-plane spacing in the z-direction ([111]), 12d(;11). This
24-atom supercell has been the basis of calculating the energies
of both the bulk and the structure containing the SF. The latter
structure has been achieved by tilting z-vector, as suggested in
the literature [13,14].

Apart from calculating cohesive energies of the bulk and the SF
containing structures on the aforementioned structures, static en-
ergy calculations have also been carried out on five different struc-
tures, having variation only in z-dimension, as depicted in Fig. 2.
Here the z-dimension corresponding to “position 1” for both, bulk
and SF, corresponds to 12 times (111) plane spacing of the opti-
mized Ni-lattice.

3. Results and discussion

For various lattice parameters, energies of fcc-Ni unit cells, each
comprising 4 atoms, have been calculated and the same have been
plotted against their volumes in Fig. 3. Based on the BM3-fitted
minimum volume, corresponding to the minimum energy, opti-
mized lattice parameter of fcc-Ni has been calculated to be
352.26124 x 1073 nm. Cohesive energies of Bulk and SF, abbrevi-
ated as, TEg and TEsg, respectively, for various z-dimensions, as
illustrated in Fig. 2, have been given in Table 1. Fittings of these
energies against their respective volumes using BM3, as illustrated
in Fig. 4, have given the minimum energies, Eq’s, corresponding to
the volumes, Vy's, which are listed in Table 2 along with the corre-
sponding goodness of fit data. Fittings of Bulk and SF data in Fig. 4
show that unlike the energy-well of bulk structures, the minimum
of the energy-well of SF-containing structures is significantly away
from “position 1”. Value of the z-dimension corresponding to the
minimum of SF-containing structure, Zsg, is obtained as follows.

Zse (in nm) = {V, corresponding to energy-well of SF}/
{Area of the (111) plane}

= {V, corresponding to energy-well of SF}/{d(110) % 2d(112)}
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Fig. 2. Atoms on the top three (111) type ABC planes within the supercell are
shown above. While position 1 is based upon the fully relaxed lattice parameter,
relative other five different z-dimensions of supercells, which are given in Table 1,
are indicated at the top using numerics “2” to “6".
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