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a b s t r a c t

The method and the advantages of an evolutionary computing based approach using a steady state
genetic algorithm (GA) for the parameterization of interatomic potentials for metal oxides within the
shell model framework are developed and described. We show that the GA based methodology for
the parameterization of interatomic force field functions is capable of (a) simultaneous optimization of
the multiple phases or properties of a material in a single run, (b) facilitates the incremental
re-optimization of the whole system as more data is made available for either additional phases or
material properties not included in previous runs, and (c) successful global optimization in the presence
of multiple local minima in the parameter space. As an example, we apply the method towards simulta-
neous optimization of four distinct crystalline phases of Barium Titanate (BaTiO3 or BTO) using an ab
initio density functional theory (DFT) based reference dataset. We find that the optimized force field
function is capable of the prediction of the two phases not used in the optimization procedure, and that
many derived physical properties such as the equilibrium lattice constants, unit cell volume, elastic prop-
erties, coefficient of thermal expansion, and average electronic polarization are in good agreement with
the experimental results available from the literature.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The temperature and pressure dependent atomistic molecular
dynamics (MD) simulations of material systems lie at the core of
many advances in the discovery and optimization of novel materi-
als in a wide variety of applications areas. The accuracy of the
material properties resulting from MD simulations, however, is al-
ways directly correlated to the quality of the interatomic interac-
tion potentials or force field functions underlying the dynamics.
The potential function is comprised of a functional form and an
accompanying set of numerical coefficients or parameters fitted
to optimize the physical properties of the simulated materials.
The functional form is generally an ansatz chosen so as to repro-
duce known symmetries, crystal structure, and basic physical or
chemical properties of the material. An initial dataset comprising
of the crystal structures including the lattices constants, bond
lengths and angles, and systematic changes in the energies of the

system as these values are changed (in other words elastic
constants) are obtained either through higher accuracy ab initio
quantum mechanical simulations or through experimental mea-
surements. Given such a reference dataset and a chosen ansatz
for the functional form, the potential parameters are generally ob-
tained by finding a set that gives the best fit to a defined set of
properties or material features [1]. Optimizing the parameters for
a given set of the properties is often a combination of local curve
fitting to the selected material’s characteristic trends followed by
closed-loop MD or static structural simulations in which known
macro-scale material quantities are targeted by iterative manual
adjustment of the chosen parameter sets [2].

The above process by definition is sequential in nature and
needs to be wholly repeated whenever a reference dataset is aug-
mented with new materials’ structural or properties data. As a
result, in the earlier days, for well known semiconductors like sil-
icon more than 30 interatomic potentials or force field functions
were developed [3] but mainly the Stillinger–Weber or Tersoff
potentials for silicon or their derivatives have been used exten-
sively over the last two decades [4–6]. Similarly, for reactive
hydrocarbons the original Brenner potential [7] was developed
in the early 90s and has been used extensively over the last
two decades [8], but only minor changes or improvements have
been added since then [9].
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The conventional local gradient based curve fitting methods,
such as steepest descent and conjugate gradient, used in the tradi-
tional optimization loop: (i) are inherently local in nature and
strongly dependent on the initial configurations for the fitting,
(ii) have a tendency to get trapped in or find mainly the nearest lo-
cal minima in a many dimensional fitting parameter space, (iii)
cannot include incremental additions to the reference dataset or
the physical properties without sacrificing completely the previous
optimization and starting all over again, and (iv) are limited overall
by how much data or how many physical properties can be
accommodated for a given set of parameters in the optimization
procedure. In certain cases when these methods are used, the lim-
itations of a resulting parameterization are a product of the func-
tional form of the potential itself, but many times these
limitations result from the sequential nature and local dependency
of the optimization loop used by local gradient based techniques.
For example, in many cases, the commonly used functional forms
have been reported with one set of parameterization for the bulk
properties and another set of the parameterization for the cluster
or surface properties of the same material.

Concurrently, in recent years there has also been a focus on the
generation and sharing of more and more materials structure and
properties data through focused programs such as the Materials
Genome Initiative (MGI) [10] and the recent OpenKIM project
[11], the latter of which seeks to implement a standard infrastruc-
ture for introducing novel potential functions which can make the
implementation and testing of new force fields more expedient.
These type of focused initiatives, along with the broader capacity
of high-performance computing resources available to the materi-
als academic and industrial community, are dramatically increas-
ing the range and depth of material characterization data. Such
data includes not only the quantum mechanical ab initio density
functional theory based simulations of a wide variety of materials
structures and properties, but also the synthesis and atomic scale
characterization of the structure and properties of the same mate-
rials in experiments. It is natural, therefore, that alternate optimi-
zation or fitting procedures be investigated for not only the direct
search and discovery of new materials and properties from these
large databases, but also for the development of the down-the-
stream simulation techniques such as MD or Monte Carlo (MC)
methods which are explicitly geared towards exploiting the large
amount of available data in the literature and online databases.
An interesting example of said alternate optimization schemes is
that of the neural network (NN) potential, which is actively being
explored for the modeling of a variety of materials [12–14]. In
the NN setting, the functional form of the potential function is re-
placed with a network of interconnected nodes categorized as in-
put, hidden and output nodes [15]. The inputs of the NN are
coordinates, or generalized coordinates [15], of the system and
the output is the system’s total energy. The connection between
any two nodes of the network is associated with a specific weight,
which is the parameter that is adjusted when fitting the NN to a
reference potential energy landscape [16]. This innovative ap-
proach to modeling interatomic interactions as well as the tech-
nique discussed here, are derived from machine learning
principles [17,18], which although applied to other fields of re-
search for quite some time, have only recently begun to make sig-
nificant contributions to MD techniques.

In this work, we investigate an evolutionary computing (EC)
based genetic algorithm (GA) method for the optimization of inter-
atomic potentials for molecular dynamics of materials systems.
The optimization occurs for a cost function that measures the fit-
ness of the force field parameter set. The optimization or fitness
within the GA context is a measure of the agreement between
the target values of a reference database, irrespective of the
number of structures and properties in the database, and the

values produced from a given initial or fitted parameter set.
Roughly speaking, the challenges faced by optimization ap-
proaches is that, for even a limited range of parameter variations,
the fitness function may live on a very rugged landscape often with
many closely-spaced local minima.

The general GA method is derived from biological genetic the-
ory and Darwinian evolutionary principles [19–21]. In the GA
method, a randomly generated set of parameters, which constitute
the so-called population pool, are adjusted through recombination
and mutation operators [22] to improve the parameter sets accord-
ing to a metric, also known as the fitness. A reference dataset of the
atomic configurations and their energies obtained from quantum
simulations are stored and the GA subsequently refers to the refer-
ence dataset continuously during the fitting procedure. A randomly
generated population of parameter sets is initially created, and the
GA then begins the stochastic process of recombining and mutat-
ing the population pool to iteratively generate better and better
evolved parameter sets over subsequent generations which are in
agreement with the entire reference dataset.

GA-based evolutionary techniques have been used for a wide
range of applications, including the optimization of gas transmis-
sion lines in petroleum piping [23], satellite scaffolding design
[20], pattern recognition and image analysis [24], microcircuit de-
sign [25], and drug design [26] for pharmaceutical applications. In
more recent work, Oh et al. [27,28] predicted and optimized the
configuration of nanoalloys consisting of Pt-Ag, Pt-Au and Pt-Cu,
by using a GA engine to drive an embedded atom model (EAM) en-
ergy evaluation to determine the lowest total energy configura-
tions of each bimetallic combination. Within the context of the
development and optimization of force field functions, Wang and
Kollman [21] were one of the first to use a GA method to create
a parameterization for an interatomic potential consisting of
bonded and non-bonded force field components for non-reactive
bio-molecular systems. The implementation presented here is de-
rived directly from Globus et al. [29,30], where GA was employed
to reproduce the Stillinger–Weber potential parameters for silicon
[4] as an initial test case.

In this work we develop and extend the method to the optimi-
zation of parameters for interatomic potentials for metal oxides,
which are known to exist in multiple phases at different tempera-
tures. As an example, we apply the GA method to the parameteri-
zation of Barium Titanate (BaTiO3 or BTO), for which a reference
dataset is first created using a DFT method, and then we explicitly
show that it is possible to (i) optimize the multiple phases of BTO
in a simultaneous single run, (ii) include incrementally more and
more data in the reference dataset during the optimization loop,
and (iii) include both the near-equilibrium and far-from-
equilibrium configurations in the optimization. All four known
phases of BTO, rhombohedral, orthorhombic, tetragonal and cubic,
are simultaneously fitted within a single GA parameterization run,
and the results are found to be in good agreement with the entire
DFT reference dataset, as well as with the available experimental
measurements of the basic mechanical and thermal properties of
BTO reported in the literature.

In Section 2, we describe the details of the GA method as used
for the parameterization of interatomic force field functions with
an example application for the optimization of the shell model
potential [31] for BTO described in Section 3. In Section 4, the main
results of the GA fitting to multiple phases of BTO in a single
simultaneous run are reported, and the validation of the evolved
parameterization in comparison with experimentally reported
values of the basic structural, mechanical, and thermal properties
of BTO are described. Finally in Section 5, we summarize the main
advantages and suitability of the GA method in fitting parameters
of force field functions as larger and larger reference datasets for
different materials are developed and made available online.
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