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This paper studies how solute segregation and its relationship to grain boundary energy in binary alloys
are captured in the phase field crystal (PFC) formalism, a continuum method that incorporates atomic
scale elasto-plastic effects on diffusional time scales. Grain boundaries are simulated using two binary
alloy PFC models - the original binary model by Elder et al. [18] and the XPFC model by Greenwood
et al. [25]. In both cases, grain boundary energy versus misorientation data is shown to be well described
by Read-Shockley theory. The Gibbs adsorption theorem is then used to derive a semi-analytic function
describing solute segregation to grain boundaries. This is used to characterize grain boundary energy ver-
sus average alloy concentration and undercooling below the solidus. We also investigate how size mis-
match between different species and their interaction strength affects segregation to the grain
boundary. Finally, we interpret the implications of our simulations on material properties related to

interface segregation.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Microstructure in metals is important for determining many of
their properties (e.g., mechanical, thermal, electrical). The various
defects associated with microstructure formation (e.g., grain
boundaries, dislocations, vacancies) contribute to an excess of free
energy of a system. As a material evolves towards equilibrium, its
microstructure changes and along with it the material’s properties.
Grain boundaries are among the most important defects in metals.
Their energy, composition, and distribution directly affect the flow
of dislocations and influence the thermodynamics of second phase
and precipitate formation.

In alloys, segregation of solute atoms can alter grain boundary
energy [1-3]. The effect of segregation can also manifest itself in
other ways. Two other properties strongly affected by solute segre-
gation are solute drag [2,4,5] and grain boundary wetting [2,6-8].
In the former case, the grain boundary energy is reduced by solute
segregation, thus reducing the driving force to reduce surface area
(excess free energy) of a grain boundary. In the latter case, solute
segregation can dramatically affect the thermodynamics of grain
boundary formation; not only can segregation alter at what und-
ercooling grain boundary wetting occurs, but it can allow for differ-
ent grain boundary states (e.g., grain boundary widths) [7].
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There have been a number of experimental studies of grain
boundary energy involving pure materials [9-11] and alloys
[1,11]. Many studies have focused on characterization of solute
segregation and distribution [2,3] as solute segregation typically
has an important effect on grain boundary energy as demonstrated
in [1,12,13]. For pure materials and dilute alloys, many of these
studies have found that the grain boundary energy is well-fit by
the well-known Read-Shockley Law when neighboring grains are
misoriented by small angles [9,11]. It is also possible to adjust
the parameters of the Read-Shockley equation to fit a larger range
of misorientation angles [9-11].

A number of theoretical approaches have also been used to
study grain boundary energy in metals. The most prevalent, for
both pure materials and alloyed metals, are the analytic and
semi-analytic dislocation models of Read and Shockley [11,14]
and Van der Merwe [2], and models employing simple thermody-
namic considerations of an interface [2,12]. Various computational
approaches have also been employed to determine grain boundary
energy in pure metals, including Monte Carlo simulations [15] and
lattice statics [16]. Some computational approaches have also been
used to model solutal effects in grain boundaries. These include
monte carlo methods [3], molecular dynamics [3,13] and phase
field simulations [7].

A relatively new continuum approach for modelling the effect of
defects in non-equilibrium phase transitions has emerged in the
past ten years known as the phase field crystal (PFC) method.
The PFC methods have been developed as part of a continued
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attempt to bridge the divide between traditional phase field mod-
elling and molecular dynamics approaches [17]. In particular, PFC
methods access diffusional time scales while incorporating the
salient features of atomic-scale elasticity, plasticity [18-20] and
dislocation properties [21]. In pure materials, PFC simulations of
grain boundary energy have yielded excellent correspondence with
the Read-Shockley theory of grain boundary energy versus misori-
entation [22,23]. They have also shed light on the physics of grain
boundary pre-melting in pure materials [23,24]. To date, the grain
boundary energetics in alloys simulated by PFC models has not
been characterized.

This work systematically characterizes the thermodynamics of
grain boundary segregation and grain boundary energy in two bin-
ary alloy PFC models, the first the original PFC model of Ref. [18]
and the structural PFC model of Ref. [25]. Section 2 introduces
the two PFC models used in this study and Section 3 reviews the
Gibbs adsorption theorem. Section 4 reports on numerical simula-
tions of the aforementioned PFC models that characterize grain
boundary energy and compares computed solute adsorption to
the prediction of Gibbs adsorption theorem. Our results are dis-
cussed in the context of previous experiments and theories. Sec-
tion 5 discusses the effect of different model parameters on our
results. Section 6 concludes and summarizes our study.

2. Phase field crystal models of a binary alloy
2.1. Original binary PFC model

The original phase field crystal model (PFC) of alloys character-
ized in this work is derived in detail in Ref. [18]. The resultant PFC
free energy is expressed in terms of a temporally coarse-grained
normalized crystal density field and a relative density difference
that is analogous to a solute concentration field. In particular, the
normalized total density is given by n= (p — p;)/p; and the normal-
ized concentration by y = — p2)/ p, where the total density p is
the sum of the density of each species, p = p; + p», and p; is the
density of a reference liquid state. The dimensionless Helmholtz
free energy functional expressed in these variables is given by
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where Bé is the isothermal compressibility of the liquid at y = 0, B5
determines how the isothermal compressibility of the liquid
changes with v, BX is related to elastic constants in the solid, and
t, v, u are determined by the low order terms of a local expansion
of the classical density functional theory description of the material,
w is related to the atomic bond energies, and K is related to w and
the lattice spacing [18]. The difference B, — B plays the role of nor-
malized temperature variable. All lengths are scaled such that the
lattice constant is a = 47t/v/3 when the lattice mismatch parameter
n = 0. The lattice spacing changes with concentration according to
the parameter # = (1/a)da/ov.

Assuming conserved dissipative dynamics for both fields, the
evolution equations are:
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In Egs. (2) and (3), the constant atomic mobilities have been ab-
sorbed in the time variable and a noise term reflecting the effect
of thermal fluctuations on the evolution of the system has been

neglected. The local chemical potentials corresponding to each con-
served field are given by u, = 6F/on and py, = 5F/5.

Because we are solely analyzing thermodynamic aspects of the
system, the equilibrium states can be found more quickly and
accurately by solving:

on oF

Fra (b*n - .“n) (4)
o oF .

o —<W—ﬂw> (5)
where the macroscopic reservoir chemical potentials, ft, and fi,, are
thermodynamic control parameters, analogous to temperature and
pressure, and t is pseudotime; this formalism is used for a pure
material in Ref. [23].

Egs. (1)-(3) can be represented on mesoscales by a set of com-
plex order parameter equations, the coefficients of which are di-
rectly linked to those of the above PFC model, which is, in turn,
linked to a simplified classical density functional theory of freez-
ing. The complex order parameter representation of Egs. (1)-(3)
has also been shown to reduce to the form of a traditional scalar
phase field model with coupled strain effects [17]. To the accuracy
of a single-mode approximation, such an analysis thus yields a

microscopic connection between continuum elastic effects and sol-
ute concentration and temperature.

2.2. Binary XPFC model

The second phase field crystal (PFC) model of binary alloys char-
acterized in this work is derived in detail in Ref. [25]. The resultant
PFC free energy is expressed in terms of a temporally coarse-
grained normalized crystal density field and a solute concentration
field. In particular, the normalized total density is given by

=(p — po)/po and the concentration field by c= ps/(p1+ p2),
where the total density p is the sum of the density of each species,
p=p1+p2 and pg is the density of a reference state. The dimen-
sionless Helmholtz free energy functional expressed in these vari-
ables is given by
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where 7 and y are prefactors chosen to fit the ideal free energy, w
and ¢y determines the strength of the entropy of mixing, and « is a
constant related to the two-point correlation functions but taken
here as a constant [25]. The correlation function, Ceg, is given by

Ceir = 8(0)Cn1 + (1 — g(c))Caz,
go)=1-Jc+ @B+ +4

with 2 being the enthalpy of mixing in the solid state and Cy, is the
correlation function between species x and y. The fourier transform
of this correlation function is given by:

Cu(k) = ZP exp < D,—azkf) exp (—G,-(k - k,-)z)

where N is the total number of family of peaks, ¢ is a variable rep-
resenting the temperature, k; is the magnitude of the wave number
of the family of peaks, D;, P;, and G; are free parameters for the it"
family of planes, treated here for simplicity as adjustable constants.
Note that the lattice spacing for each set of planes is a; = 27/k;.

Assuming conserved dissipative dynamics for both fields, the
evolution equations are:
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