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a b s t r a c t

If effective stress is replaced by true stress for calculation of damage, the problems which arise due to
strain softening are eliminated. This consideration leads to the coupling between damage and plasticity
models. Despite beneficial features of this consideration, different orders of complexity will appear in the
numerical solution of the resulting constitutive equations. In this work, the fundamental equations for
coupling damage with nonlinear cyclic plasticity model based on small deformation assumption are
derived and the continuum relations for plastic multiplier and tangent matrix are obtained. For imple-
menting the proposed model in finite element code, an implicit method with explicit updating is used
for solving the system of nonlinear equations instead of matrix inversion. Corrector relations for stress,
back stress and plastic strain tensors as well as damage are introduced. Although, generality has been
observed in the damage formulation, the proposed integration scheme is modified to accommodate
the Bonora damage model which is implemented in the commercial finite element code MSC.MARC.
The numerical implementation is validated by comparing the numerical results with analytical solutions
for the damage evolution law under different stress triaxiality levels and damage exponents. Also, two
different models are considered for FE simulations and a comparison is made between the uncoupled
and the proposed models.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

In metals, damage consists of three different mechanisms
including void nucleation, growth and coalescence. It is well
known that voids nucleate from hard particles such as inclusion
and precipitates. All mechanisms are deeply localized in the mate-
rial microstructure. Their characteristic size is usually much smal-
ler than the average grain size. Even at rupture, in the region close
to the fracture surface, porosity is usually very low and much less
than that predicted by the porosity models [1]. As a consequence,
the macroscale effects of damage on material behavior are difficult
to be evaluated.

The continuum damage mechanics (CDM) based approach used
in the study of the ductile damage in metals and alloys was initially
proposed by Kachanov [2] and was developed by Lemaitre [3] and
Lemaitre and Chaboche [4]. In this framework, damage is one of
the state variables which accounts for the progressive degradation
due to the irreversible deformation processes occurring at micro-
scale in the material. In the anisotropic evolution of damage,
various types of damage at the micro-scale level are distributed

non-uniformly in the material. Anisotropic damage can be intro-
duced by a forth order tensor [5,6] or more practically by second
order damage tensor [7–11]. On the other hand, if voids, cavities
and cracks are distributed uniformly in all directions, the material
degradation introduces isotropic damage. In this case, damage var-
iable can fully be characterized by a scalar [2,12–14]. Some exper-
imental studies [7,15–17] show that the damage-induced material
stiffness degradation reveals its effects by decrease in the elastic
modulus and change in Poisson’s ratio even when the virgin mate-
rial is isotropic. This phenomenon cannot be introduced only by
the orientation-independent scalar damage models. Therefore, it
can be concluded that anisotropic damage theories are more accu-
rate in predicting ductile fracture of materials. However, some
researchers neglect the change of Poisson’s ratio even in the case
of anisotropic damage [11,18]. Some researchers prefer to simplify
the damage model by considering a constant Poisson’s ratio and
assuming an isotropic damage evolution. Literature reviews have
shown that this simplification is widely used in the investigations
particularly for initially isotropic metal alloys [19–29].

The main purpose of the present work is to consider the true
stress instead of the effective stress in the yield function of the con-
stitutive coupled damage-plasticity model. Therefore, a simple
scalar form of damage variable and constant Poisson’s ratio are
assumed to simplify the proposed model and to reduce the
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expressions. According to the Kachanov’s definition, the damage
variable is defined by:

D ¼ AD

A0
ð1Þ

When AD is set equal to zero, the material is in its virgin state rep-
resented by D = 0. At fracture, we have AD = A0 and D = 1, implying
that the entire nominal section is damaged and the material loses
its load carrying capability altogether. Effective stress concept,
ð~r ¼ r=ð1� DÞÞ, was initially introduced by Rabotnov [12]. Later
and based on the strain equivalence hypothesis [30] the constitu-
tive equations for fully coupled ductile damage with Armstrong–
Fredric plasticity model [31] were proposed by Doghri [19]. In fully
coupled damage formulations in which the effective stress is con-
sidered in both yield function and elastic strain formulation, the
damage accumulates as a function of other state variables (usually
plastic strain and stress triaxiality). In these formulations, the dam-
age has the following effects:

(a) Damage reduces the elastic properties such as Young modu-
lus but does not affect the Poisson’s ratio.

(b) The yield surface is progressively scaled down with the
increase of damage. If it is assumed that failure occurs for
D = 1, then the yield surface eventually reduces to a point.
This is usually known as damage softening effect. In FEM
application this effect is responsible for the plastic strain
localization and mesh effect.

According to statement (a), the damage effects can be observed
from the elastic unloading in a plastic deformation process.
According to statement (b), during a continuous plastic deforma-
tion under strain controlled condition, the damage effects should
be observable through the decrease of the actual stress (the stress
acting on the net area of material) which is not dependent on
geometry changes.

One of the consequences of coupling the damage and the mate-
rial plastic flow curve is softening which in turn is responsible for

plastic strain localization and mesh dependence of the solution.
Damage softening is a key feature of porosity models such as Gur-
son-type based models [32–34].

On the other hand, in partially coupled damage model which is
the case in the present study, the true stress is considered instead
of the effective stress in the yield function. Therefore, damage af-
fects some, but not all, of the material properties. The level of cou-
pling is based on the experimental evidences of measurable
damage effects. This approach eliminates some of the limitations
of fully coupled formulations on one hand but introduces a number
of computational complexities, on the other hand. Pirondi and
Bonora [35] suggested a different level of coupling based on the
experimental evidences of ductile damage effects at the macro-
scopic scale. This approach is known as partial coupling, where
the damage reduces the material elastic stiffness but it does not
appear explicitly in the expression of material plastic flow. As sta-
ted above, in previous investigations on damage, the researchers
used to consider the conventional tensile stress–strain curve as
the flow curve of the virgin material (without damage). In their
investigations, the researchers used to take account of damage ef-
fects by using effective stress in the yield function. But the fact is
that the measured tensile stress–strain curve is influenced by pro-
gressive damage in the material and cannot be considered as the
flow curve of the virgin material. Therefore, the separation of mate-
rial flow curve from damage effects may not basically be true. Pir-
ondi and Bonora [35] proposed a model based on the measured
flow curve which includes the effects of damage too. The effects
of damage are determined through the procedure given by Bonora
et al. [36]. In the model proposed by Pirondi and Bonora [35] dam-
age is obtained independently after calculation of the accumulated
plastic strain.

Bonora et al. [21] have discussed the difficulties associated with
separating the contribution of damage softening from the total
plastic strain hardening in tensile flow curve which is obtained
from experiment. In particular, they showed that if the geometry
changes such as necking or prior failure due to macroscopic crack
formation at the center of the sample are correctly accounted for,

Nomenclature

b isotropic hardening exponent
f yield function
k1, k2 kinematic hardening parameters
n material hardening exponent
p total active accumulated plastic strain under multiaxial

state of stress
p+ active accumulated plastic strain under multiaxial state

of stress
r associated variable for isotropic hardening
A0 nominal sectional area
AD damage sectional area
CD corrector for damage
Cp corrector for accumulated plastic strain
CS corrector for deviatoric stress tensor
CX corrector for backstress tensor
D damage variable
Dcr critical damage at failure
E0 Young’s modulus for undamaged material
E effective (damaged) Young’s modulus
FD damage dissipation potential
G0 shear modulus of undamaged material
I fourth order identity tensor
J2 second deviatoric stress invariant
K0 bulk modulus for undamaged material
KD Residual function for damage

KS Residual function for deviatoric stress tensor
KX Residual function for backstress tensor
N flow direction tensor
Q maximum change in yield surface radiusbRð Þ isotropic hardening function
S deviatoric stress tensor
S0 damage strength energy
X backstress tensor
Y associated variable for damage (strain energy density

release rate)
a damage exponent
d Kronker tensor function
e strain tensor
ee elastic strain tensor
ep plastic strain tensor
ecr strain at failure
eth damage threshold strain (uniaxial)
k plastic multiplier
m Poison’s ratio
r stress tensor
~r effective stress tensor
r0 initial yield stress
rH hydrostatic stress
r̂yðÞ radius of yield surface
1 second order identity tensor
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