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a b s t r a c t

We present two modeling approaches for predicting the macroscopic elastic properties of carbon nano-
tubes/polymer composites with thick interphase regions at the nanotube/matrix frontier. The first model
is based on local continuum mechanics; the second one is based on hybrid local/non-local continuum
mechanics. The key computational issues, including the peculiar homogenization technique and treat-
ment of periodical boundary conditions in the non-local continuum model, are clarified. Both models
are implemented through a three-dimensional geometric representation of the carbon nanotubes net-
work, which has been detailed in Part I. Numerical results are shown and compared for both models
in order to test convergence and sensitivity toward input parameters. It is found that both approaches
provide similar results in terms of homogenized quantities but locally can lead to very different micro-
scopic fields.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Following the first part, ‘‘Computational modeling of elastic prop-
erties of carbon nanotube/polymer composites with interphase re-
gions. Part I: micro-structural characterization and geometric
modeling’’ [1], we now assess the elastic mechanical properties of
carbon nanotube (CNT)/polymer composites by large scale compu-
tational models.

CNT/polymer composites present peculiar micro-structural fea-
tures. CNTs tend to create interwoven networks and to agglomer-
ate together to form ‘‘clusters’’ due to the Van der Waals forces
and Coulomb attractions [2–4]. These complex microstructures
might result in strong heterogeneities in the nano-composites. An-
other feature of CNT/polymer composites are the thick (with re-
spect to the CNT diameter) polymer interphase regions at the
CNT/bulk polymer frontier. Polymer chains easily wrap, crystallize
or agglomerate around a CNT [5–8] to form a thick polymer inter-
phase region [5,9,10]. The mechanical properties of this interphase
region are much higher compared to the properties of the amor-
phous phase [11,12]. Additionally, we proved in the first part [1]
that, even at low CNT content, the volume fraction of these inter-
phase regions can be quite high. Some experimental studies sug-
gest that these interphase regions play, in fact, a major
reinforcing role in nano-composites [11,13].

Multiple modeling and simulation strategies have been pro-
posed to estimate the mechanical properties of CNT/polymer com-
posites [14], such as, molecular dynamics [15–17], continuum
mechanics [18,19] and multiscale approaches [20–24]. However,
few simulations focus on both CNT networks and polymer inter-
phase regions to study their effects on the mechanical behavior
of nano-composites. The reason is that accounting for the CNT net-
work and the surrounding interphase regions becomes quickly
untraceable from the computational point of view at the scale of
the representative volume element (RVE).

Here, we intend to present two possible modeling approaches:
classical local continuum mechanics, involving contact forces, and
hybrid local/non-local continuum mechanics that involves both lo-
cal and non-local interactions. While the first class of model is clas-
sical, the second class is of interest for its future possible
applications to failure simulation. It belongs to a more general
framework known as ‘‘peridynamics’’. Peridynamics [25] has been
recently proposed as a way to model the deformation of bodies,
especially for discontinuity and fracture problems [26,27]. It has
been proven to be an upscaling of molecular dynamics [28] and a
limiting case of classical local models when the peridynamics
length scale goes to zero [29–31]. The motivation for using a
non-local continuum model is double: (1) it can be a way to simu-
late the macroscopic behavior while capturing some specific fea-
tures at the very low scale (non-local forces and interactions),
and (2) it defines a consistent framework for failure simulations
in the future.
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Then, the objective of this paper is to simulate the RVE using
both classical approaches and a hybrid local/non-local model, to
compare their results in pure elasticity and to derive for each of
them the homogenized elastic material parameters. We can ob-
serve that both models provide similar results on homogenized
quantities despite the fact that they lead to very different micro-
scopic fields.

The reminder of this paper is organized as follows. Section 2 re-
views the modeling choices with respect to the geometry and
physics modeling. The local, non-local and hybrid continuum
mechanics models are introduced in Section 3. In Section 4, we dis-
cuss some specific technical points related to homogenization and
periodical boundary conditions when the non-local continuum
model is used. Numerical experiments and results are reported
and discussed in Section 5.

2. Overview on modeling assumptions

2.1. Major geometrical assumptions

The assumptions about the geometrical modeling have been
discussed in details in Part I [1]. They are listed as follows:

1. Diameters of CNTs is neglected: the diameter of CNTs is ignored in
our model. Because the size of the RVE (in the order of 1 lm for
such materials [32]) is much larger than the diameter of the
CNTs (in the order of 10 nm), we model the CNTs by geometrical
threads with zero volume.

2. Existence of thick polymer interphase regions around the CNTs: the
presence of a CNT results in a modification of the surrounding
resin (due to rearrangement of the polymer chains, wrapping
around the CNT or locally higher degree of crystallinity) over
an interphase that is thick with respect to the original diameter
of the CNT [5,9,10].

3. No void in the bulk polymer: the bulk polymer is assumed free of
bubbles, voids or cracks.

2.2. Mechanical assumptions

We adopt the following key assumptions concerning the
mechanical properties of the different phases involved in a CNT/
polymer nano-composite with thick interphase regions:

1. Anisotropic behaviors for both the CNTs and the polymer inter-
phase regions: a CNT is regarded as transverse isotropic; the
local transverse isotropy direction is given by the local tangent
vector to the CNT thread [33]. In the same way, the behavior
of the modified polymer in the surrounding interphase region
is transverse isotropic in the same local basis, as the local
direction of the CNT guides the polymer rearrangement
[10,34].

2. Progressive decrease of the properties of the polymer interphase
region: the properties of the surrounding polymer are assumed
to decrease progressively when moving away from the CNT.
This is supported by experimental evidence such as [10,35].
Barber et al. [35] revealed that the polymer phase around the
CNT displays higher mechanical resistance than the bulk resin.
Furthermore, Ding et al. [10] suggested the existence of multi-
ple polymer layers coating multiwall CNTs with decreasing
stress transfer from the inner to the outer layers; therefore,
the mechanical properties of the polymer interphase region
(here, the elastic parameters as we focus only on the elastic
behavior for this first study) were modeled as progressively
varying from the properties of the CNT to the modulus of the
bulk polymer.

3. Two modeling propositions: A local continuum model and an
hybrid local/non-local continuum model

3.1. A classical continuum model

Let us consider an elastic body occupying an open, bounded and
regular domain X1. This structure is subjected to body forces b and
surface tractions T over a portion CT of the boundary @X1, n being
the outward unit normal to CT . Over the complementary part C�u of
the boundary, the displacement �u is prescribed (see Fig. 1).

u, e and r are respectively the displacement vector field, the
infinitesimal strain tensor field and the Cauchy stress tensor field.

K(x) is the 4th-order stiffness tensor at point x. The governing

equations for the local continuum model are:

� Kinematic admissibility and compatibility

e ¼ 1
2
r � uðxÞþtr � uðxÞ
� �

8x 2 X1 ð1Þ

u ¼ �u 8x 2 C�u ð2Þ

� Static admissibility

divr ¼ �b 8x 2 X1 ð3Þ
r � n ¼ T 8x 2 CT ð4Þ

� Constitutive equation

r ¼ KðxÞ : e 8x 2 X1 ð5Þ

The local stiffness operator K(x) varies in space to define the

complex network of CNTs and interphase regions.
Based on the mechanical assumptions we presented in Sec-

tion 2.2, the stiffness parameters are assumed to vary continuously
in space and the matrix surrounding a CNT displays a locally in-

creased stiffness. The stiffness tensor K(x) is defined by introducing

a weighting scalar function a as follows:

KðxÞ ¼ aðtxÞK1 þ ð1� aðtxÞÞK0 ð6Þ

where K0 is the stiffness tensor of the (isotropic) amorphous poly-

mer matrix, and K1 is the maximum stiffness of the ordered poly-

mer phase when it becomes close to the CNT surface. tx (P0)

denotes the closest distance of a point x to a CNT. The function a
is a modeling choice but should meet at least the following criteria:

aðtxÞ ¼ 1 for tx ¼ 0
aðtxÞ ¼ 0 for tx P tp > 0
0 < aðtxÞ < 1 for 0 < tx < tp

8><
>: ð7Þ

in which tp is the maximum thickness of polymer interphase re-
gions above which the matrix is assumed to be only the bulk matrix
that is not affected by the CNTs (see Fig. 2).

Fig. 1. The classical continuum domain X1.

F. Han et al. / Computational Materials Science 81 (2014) 652–661 653



Download	English	Version:

https://daneshyari.com/en/article/1560910

Download	Persian	Version:

https://daneshyari.com/article/1560910

Daneshyari.com

https://daneshyari.com/en/article/1560910
https://daneshyari.com/article/1560910
https://daneshyari.com/

