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a b s t r a c t

In this study, a two-dimensional rate-dependent gradient crystal plasticity model for non-convex ener-
getic hardening is formulated and applied to the simulation of inelastic microstructure formation. In par-
ticular, non-convex hardening is modeled via a Landau–Devonshire potential for self-hardening and two
interaction-matrix-based forms for latent hardening. The algorithmic formulation and the numerical
implementation treats the displacement and the glide-system slips as the primary field variables. The
numerical simulations are carried out for the case of tensile loading with periodic displacement and slip
boundary conditions. The results for the formation of inelastic microstructures and their evolution under
mechanical loading are illustrated together with the macroscopic stress–strain responses.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Although now a basic tenet of modern material modeling and
material science, the idea that material properties and mechanical
behavior are determined by the presence and evolution of an
underlying inhomogeneous inelastic microstructure is still an issue
of detailed research. Typical examples of such inelastic microstruc-
ture include Lüders band (e.g., [35]) or Portevin–Le Chatelier bands
[34,49], or dislocation cell structures (e.g., labyrinth, mosaic, fence
or carpet structures) (e.g., [37,43,44,18,42,19]).

The fact that materials with microstructure are widely spread
in nature leads to a thorough research in the field of computa-
tional modeling. Crystal plasticity is of particular interest in the
class of materials with plastic behavior since the deformation is
mainly determined by the deformation of the underlying micro-
structure (e.g., [15,21]). To include micro-effects in a macroscopic

model, a complete scale separation is usually required. However,
standard crystal plasticity models do not contain intrinsic mate-
rial length-scales. This implies that these models are not capable
of capturing macroscopic size-dependent effects. With regards to
model development, the focus in recent years has been on the
formulation of models encompassing multiple length- and/or
timescales. Therefore extensions of the non-local crystal plasticity
theory have been developed. For example, in Ortiz and Repettto
[33] and Ortiz et al. [32] a non-local extension based on an ideal-
ization of dislocation microstructures as sequential laminates is
presented, which is algorithmically performed with the procedure
of incremental energy minimization. In further works (e.g.,
[11,29,23]), it has been proven that with the help of their incre-
mental form, inelastic initial boundary-value problems (IBVPs)
can be formulated in a variational setting to obtain evolving
deformation microstructures. Alternative, two recent develop-
ments in the context of inelastic behavior of single- and polycrys-
tal metals are (i) the development of gradient crystal plasticity
(e.g., [17,39,14,2,7,16,24,27,28,41,6,4]) at the glide-system level
and (ii) the application of microscopic phase field methods (e.g.,
[45]) at the single dislocation level. A prominent aspect of phase
field models is the modeling of energetic microstructure interac-
tion via non-convex contributions to the free energy of the sys-
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tem. It is known in materials science that almost all microstruc-
ture evolution processes are accompanied by non-convex free
energies serving as driving force for microstructure evolution
(for an overview see Ortiz and Repettto [33]). From these obser-
vations it is clear that non-convexity has to be incorporated in
crystal plasticity, enabling plasticity-driven evolving microstruc-
tures. Recently, gradient plasticity has been extended in this
direction in Yalcinkaya et al. [47], Klusemann et al. [20], Yalçin-
kaya et al. [46], Klusemann and Yalcinkaya [22], resulting in a
type of coarse-grained phase field form for gradient plasticity
(e.g., [45]). In particular, a polynomial-based Landau–Devonshire
form for non-convex energy storage due to inelastic local defor-
mation was examined in one dimension (1D) by Yalcinkaya
et al. [47]. They demonstrated that such a form models the tran-
sition from elastic to inelastic deformation as well as the accom-
panying stress relaxation. From the point of view of the
formulation of the corresponding initial-boundary-value problem
(IBVP), the work of Yalcinkaya et al. [47] treats inelastic deforma-
tion as global and the dislocation density as local. Examples of
analogous deformation-based formulations can be found in the
literature (e.g., [8,1,2,9]). Alternatively (e.g., [14,7,13,5,25]), the
formulation of the IBVP can be based on the dislocation density,
in which case the inelastic local deformation (i.e., in the form of
the flow rule) is modeled as a internal variable. These two formu-
lations of the 1D IBVP were examined in detail with the help of
continuum thermodynamic rate-variational methods [40] by
Klusemann et al. [20]. As shown there, both formulations gener-
ally predict the same microstructure development and material
behavior in the bulk. Near the boundaries, however, differences
arise which may be due to the formulation-dependent represen-
tation of the boundary conditions.

More recently, these considerations have been extended to two
dimensions (2D) in Yalçinkaya et al. [46] and Klusemann and Yal-
cinkaya [22]. Yalçinkaya et al. [46] investigated the microstructure
evolution due to glide-system interaction (latent hardening)
neglecting the self-hardening. In Klusemann and Yalcinkaya [22]
the effect of an Landau–Devonshire potential, representing a form
of self-hardening and neglecting the interaction between different
glide systems, was investigated. In the current work the evolution
of laminate-like microstructures were obtained in 2D considering
both self- and latent-hardening mechanisms via direct extension
of corresponding 1D works [47,20]. In addition, all models and
IBVPs are formulated now in rate-variational form. The work be-
gins in Section 2 with a synopsis of the basic model formulation to-
gether with a brief summary of the algorithmic formulation and
numerical implementation. This is followed in Section 3 by a pre-
sentation and discussion of the simulation results for the case of
plane strain tension. Finally, the work is summarized in Section 4.

2. Model formulation and numerical implementation

The physical model is formulated in the framework of contin-
uum thermodynamics (e.g., [36]) history-dependent behavior. Gi-
ven the resulting potential-based model form, the corresponding
IBVP is amenable to formulation using rate-variational methods
(e.g., [40,41]). For simplicity, attention is restricted to isothermal,
quasi-static, and infinitesimal deformation processes. All external
supplies of momentum, energy, and so on, are negligible in the cur-
rent context. Let B represent the reference configuration of mate-
rial of interest with boundary @B. Besides the displacement u, the
glide system slips c = (c1, . . .) represent the unknown fields in the
model.

In the current thermodynamic setting, the material behavior is
either kinetic/dissipative or energetic in nature. The former is ac-
counted for by a simple rate-dependent power-law form

v ¼
X

a

1
m0 þ 1

rD0 _c0
_ca

_c0

����
����

m0þ1

ð2:1Þ

for the dissipation potential. Here, _c0 denotes the material deforma-
tion rate, rD0 the drag stress, and m0 is the rate sensitivity. Since
this form of v is non-negative and convex in _ca, it satisfies the dis-
sipation principle (e.g., Silhavy [36]) sufficiently. Note that this form
tacitly assumes zero activation energy or stress for the initiation of
inelastic flow. Since the current work is concerned with purely
qualitative effects, m0 = 1 is chosen for simplicity; as will be seen
below, this results in a Ginzburg–Landau–/Allen–Cahn phase-
field-like relation for each ca 2 c, with r�1

D0 _c0 the corresponding
‘‘mobility’’ in the context of (2.1).

Turning next to energetic effects on the material behavior, these
include contributions from elastic strain, hardening and non-con-
vexity reflected in the form of the free energy density w. In the case
of non-convex gradient inelasticity [47,20], this is then modeled by
the sum

w ¼ 1
2

k0 ðI � EEÞ2 þ l0 EE � EE þ wc

þ 1
2

aE0 ‘2
E0=b2

� � X
a

.aðrcaÞ
2

¼ wE þ wc þ wrc ð2:2Þ

of elastic wE, non-convex wc and gradient wrc parts, respectively.
Here, k0 and l0 denotes the longitudinal and shear elastic moduli,
and

EE ¼ symðruÞ �
X

a
ca symðsa � naÞ ð2:3Þ

is the linear elastic strain tensor, with symðAÞ :¼ 1
2 ðAþ ATÞ repre-

senting the symmetric part of any second-order tensor A. Further,
sa and na are the slip direction and normal of the glide system a,
respectively. As well, .a:¼ � bsa � rca represents the (non-dimen-
sional) density of (edge) geometrically necessary dislocations
(GNDs), and b the Burgers vector magnitude as usual. As shown,
the gradient energy is assumed a quadratic function of the slip gra-
dientrca projected onto the glide system direction sa depending as
well on the material lengthscale ‘E0 and hardening modulus aE0.
From Evers et al. [14], for example, aE0 = E/16(1 � m2) in terms of
the Young’s modulus E and Poisson’s ratio m. The specific forms of
the non-convex potential wc are specified explicitly in the following
sections (see (3.8) for Landau–Devonshire form, and (3.9) with
(3.10) for latent hardening case and (3.9) with (3.11) for the case
of both self and latent hardening).

Given the above constitutive relations, application of contin-
uum thermodynamic methods (e.g., Silhavy [36], Svendsen [40])
yields

0 ¼ �d _uf ¼ divð@r _ufÞ; @ _cav ¼ �d _ca f ¼ divð@r _ca fÞ � @ _ca f; ð2:4Þ

for quasi-static momentum balance and the (now non-local) glide-
system flow rule, respectively, in B, with dxf:¼@xf � div (@rxf) the
variational derivative. Here,

f ¼ @ruw � r _uþ
X

a
@caw _ca þ @rcaw r _ca;

¼ T � symðr _uÞ þ
X

a
ð@caw� saÞ _ca � aE0 ð‘2

E0=bÞ .a sa � r _ca; ð2:5Þ

is the energy storage rate density,
T ¼ @EE w ¼ CE EE is the stress tensor, and sa = sa � Tna is the re-

solved Schmid stress as usual. Restricting attention to kinematic-
type boundary conditions here for simplicity, _u and _c are specified
on @B. As discussed in detail elsewhere (Svendsen [40], Svendsen
and Bargmann [41]), using such relations and assumptions, one
can formulate the corresponding IBVP for fields like u and each ca -
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