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a b s t r a c t

An accurate spring-mass model, in the context of a three-dimensional finite element formulation, is
developed for investigating the vibrational characteristics of single-walled carbon nanotubes (SWCNTs).
Atoms are replaced by lumped mass elements at their locations and appropriate spring-type elements are
defined as interconnections between the atoms in order to simulate the interatomic interactions. The
effect of out of plane angle variation energy is incorporated into the model. The obtained results for
the fundamental frequency of single-walled carbon nanotubes of various kinds are graphically illustrated.
The influences of some commonly-used boundary conditions and changes in the nanotube geometrical
parameters on vibration frequencies are examined. The numerical results show good agreement with
other published results in the literature. Also, some novel relations are deduced which can be more useful
in predicting the fundamental frequency of SWCNTs with great number of atoms.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The number of publications on carbon nanotubes (CNTs) has
increasingly grown since the appearance of Iijima’s landmark pa-
per [1] in 1991. Their novel and superior electronic, mechanical
and other physical and chemical properties have attracted great
attention of many researchers in the globe. These unique proper-
ties have provided CNTs with numerous potential applications in
nanoelectronics, nanodevices, nanocomposites and so on [2–9].
CNTs have very large Young modulus in their axial direction which
is measured near to 1 TPa. Also, their tensile strength is about 100
times higher than that of steel at one-sixth of the weight [10].

In recent years, vibrational characteristics of CNTs have been
widely studied using several methods such as experimental
techniques [11–15], molecular dynamics simulations [16,17],
molecular structural mechanics approach (MSMA) [18–24] and
continuum mechanics theories [25–35]. In molecular dynamics
simulations, atoms are considered as particles interacting to each
other through several types of potential fields. Although molecular
dynamics simulations generate abundant results for understanding
the behavior of structures, but the major concern about this meth-
od is the limitation of working with atomic systems in the scale of
nanometer and this leads to time consuming and complicated
computational efforts. In MSMA atoms and bonds are considered
as joints and beams, respectively. Based on the continuum

mechanics theory, each nanotube is modeled as a single continu-
ous beam or shell. Then, the governing vibration equations of
beams and shells are used for investigating the vibrational charac-
teristics of nanotubes. However, MSMA gives more accurate mod-
els for CNTs rather than the continuum mechanics, but the former
is slightly more time consuming. Amongst the aforementioned
methods, continuum mechanics due to its simplicity has allocated
a remarkable portion of publications conducted on the vibration of
CNTs. Recently, a comprehensive review was published by Gibson
et al. [10] on the vibrations of CNTs and their composites. The
number of publications conducted on the comprehensive study
of the vibrational behavior of SWCNTs is scarce and less works
can be seen in the literature dealing with the general vibration
spectra of SWCNTs with armchair and zigzag structures and vari-
ous aspect ratios.

Using MSMA, Behfar and Naghdabadi [36] investigated the
vibration of embedded multilayered graphene sheet. However,
they did not include the cylindrical zigzag, armchair or chiral nano-
tubes in their study. Based on MSMA, Hashemnia et al. [37] imple-
mented the finite element method to determine the fundamental
frequencies and their corresponding modes for graphene sheets
and two types of nanotubes i.e., zigzag and armchair. In their anal-
ysis, carbon atoms and interatomic bonds are considered as
concentrated masses (joints) and beams, respectively. Then, the
equivalent space frame can be achieved by setting equality
between strain energies of each element and potential energies
of each bond. Georgantzinos et al. [38] presented a linear
spring-based element formulation for computation of vibrational
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characteristics of SWCNTs. The major concern about their model is
the consideration of a linear spring between two bonds for
calculating the potential energies due to the bond angle bending.
For example, when atom moves along one of its bonds, the model
given by [38] does not give the real potential energy variation of
the structure. Chowdhury et al. [39] investigated the vibrational
characteristics of armchair and zigzag SWCNTs using the MSMA.
They used the universal force field potential which is in accordance
with the formulation given in [40]. Based on a modified molecular
structural mechanics model, Cheng et al. [41] studied the RBM
(radial breathing mode) frequencies and mode shapes of different
carbon CNTs. They indicated that asymmetric, non-purely radial
RBM modes are observed in the chiral CNTs mainly due to their
non-axisymmetric atomic structure.

In this work, a spring-mass finite element formulation [42,43]
is employed for investigating the fundamental frequency of zig-
zag and armchair SWCNTs. A rotational spring is implemented
for simulating the bond angle bending and out of plane angle
torsion interactions which remove the overestimation of the
natural frequencies caused through using continuum mechanics
theories, structural mechanics using beam elements and
spring-mass models using linear springs. Further, the influences
of some commonly used boundary conditions and changes in
the nanotube’s geometrical parameters on the vibration frequen-
cies are examined. Some new graphical illustrations are made
and two proportional relations are deduced which can be more
useful in predicting the fundamental frequency of SWCNTs with
high dimensions.

2. Interatomic potential energies

The major concern about the molecular mechanics calculations
is the definition of the interaction forces between individual atoms.
The total potential energy of atoms is used for defining this force
field. Neglecting the effect of the electrostatic interaction, the total
potential energy which is the summation of energies emerged due
to the different interatomic interactions, can be described by the
following relation:

E ¼
X

Er þ
X

Eh þ
X
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X

Ex þ
X

EvdW ð1Þ

where Er, Eh, E/, Ex are energies due to the bond stretching, angle
variation, dihedral angle torsion and out of plane torsion, respec-
tively, and EvdW stands for the Van der Waals interactions. For sake
of simplicity, one can describe the potential energy by the harmonic
approximation. Therefore, the potential energy terms correspond-
ing to dihedral angle torsion and out of plane torsion can be merged
together and an equivalent energy term is replaced instead, i.e.,
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2

kbðDbÞ2 ð4Þ

where kr, kh, kb stand for the bond stretching force constant, bond
angle variation force constant and out of plane angle variation resis-
tance, respectively. In the above equations, the terms Dr, Dh, Db
and represent the increment in bond length, changes in bond and
out of plane angles, respectively.

3. Finite element modeling

Writing the stiffness matrix of the longitudinal spring (the C–C
bonds) will be performed in a similar manner as space trusses as
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here li , mi and ni stand for the direction cosines of the bond i and the
three coordinate axes.

In the case of rotational springs we must write the potential en-
ergy due to changes in positions of involved atoms with that angle
(see Fig. 1). This is due to the fact that the coordinates of three in-
volved atoms changes as this angle changes. Therefore the corre-
sponding potential energy is given as below

Uh ¼
1
2

khðdh2Þ ð6Þ

If we write the potential energy variation due to this angle
change by using the Cartesian coordinates of the nodes, the stiff-
ness matrix components of the rotational spring can be success-
fully achieved by differentiating from this potential energy
according to Castigliano’s theorem. Since three nodes are involved
with this angle, the size of stiffness matrix will be 6 � 6 in the case
of two-dimensional and 9 � 9 in three-dimensional one. For sake
of simplicity, the corresponding relations for two-dimensional case
are considered here.

The net change between two bonds angle is identical to the dif-
ference between the changes in the two bond angles as

dh ¼ dh1 � dh2 ð7Þ

where dh1 and dh2 are introduced as

dh1 ffi sinðdh1Þ ¼
~r1 � ~�r1

le2
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where r1 and r2 vectors are the bonds before deflection and can be
written as follows:

r1 ¼ le1ðl1 îþm1 ĵÞ ð10Þ

r2 ¼ le2ðl2 îþm2 ĵÞ ð11Þ

Fig. 1. Displacement of atoms with angle variations (green lines show the bond
status after deflection and black arrows are related to displacement vectors). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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