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a b s t r a c t

This paper addresses the prediction of the elastic properties of long fibre-reinforced composites from the
finite element-based computational homogenisation of a Representative Volume Element (RVE) in the
range of moderately large strains. The macroscopic elastic properties are estimated by matching the ref-
erence tangential elasticity tensors of the homogenisation-based model and an assumed transversely iso-
tropic hyperelasticity model. The effectiveness of the approach is illustrated by means of a numerical
example where the solution of a boundary value problem obtained with the assumed hyperelastic model
and the predicted parameters is compared with that obtained with a fully coupled multi-scale simulation.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction and background

Accurate micro-mechanically-based predictions of elastic con-
stants of a composite, which take the shape, size and distribution
of the reinforcement into account, as well as the material properties
of both the matrix and the reinforcement are very desirable in engi-
neering design, as they offer the possibility of tailoring the compos-
ite for specific needs. The use of homogenisation methods based on
the volume averaging of the strain and stress field over a Represen-
tative Volume Element (RVE) to tackle this problem has been
reported in the literature since the 1980s. In this context, Adams
and Crane [1] used distinct kinematical constraints over the RVE
boundary for normal and shear loading, while Zhang and Evans
[38] and Shi et al. [29] used axisymmetric unit cells. Brockenbrough
et al. [4] investigated fibre packing and shape on the overall prop-
erties using linear RVE boundary kinematical constraints, while
more recently Grasset-Bourdel et al. [11] proposed a technique
for optimisation of 3D RVE for anisotropy index reduction in mod-
elling thermoelastic properties of two-phase composites using a
periodic homogenisation method. Sun and Vaidya [34] imposed
separate RVE boundary conditions for each property sought, Xia
et al. [37] extracted the material properties of a square packed peri-
odic RVE from the compliance matrix. Michel et al. [21] proposed a
methodology based on a Fast Fourier Transform as an alternative for
the more conventional finite element-based analysis.

A number of publications have appeared in the literature using
homogenisation for predicting mechanical behaviour of long fibre
composites in the small strain regime. Theocaris et al. used 2-D
RVE’s to study fibre reinforced composites with linear elastic con-
stituents [36] and compared with existing analytical solutions.
Also limited to small strain regime, Dong et al. compared fibre
packing arrangements using embedded unit cells [8], but incorpo-
rated a non-linear strain-hardening matrix. Macroscopic non-
linear parameter estimation under finite straining is a rather less
researched area. Notable publications include [13], where Guo
et al. estimated the strain energy function for the composite by
using generalised Halpin-Tsai equations, as well as Lahellec et al.
[18] and Brun et al. [5], who obtained estimates of the macroscopic
behaviour of hyperelastic composites using the second-order
method of Castañeda [6] and Castañeda and Tiberio [7].

We propose a methodology to estimate the parameters of an
assumed transversely isotropic hyperelastic constitutive model in
the range of moderately large strains, based on matching its refer-
ence tangential elasticity tensor with that of the computational
homogenisation-based multi-scale model. The effectiveness of
the procedure is illustrated by means of a numerical example
where the finite element solution of a boundary value problem ob-
tained with the assumed hyperelasticity model and the predicted
parameters is compared with that obtained with a fully coupled
multi-scale simulation.

The layout of the paper is as follows: First, a brief introduction
to a general large strain multi-scale constitutive theory and its
implementation in the finite element setting is presented in Sec-
tion 2. The proposed procedure for the parameter identification
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methodology to the range of moderately large strains is presented
in Section 3 together with the numerical example used in its veri-
fication. Some concluding remarks are made in Section 4.

2. Multi-scale constitutive modelling at large strains

The class of homogenisation-based multi-scale constitutive
models employed in the present study is characterised by the
assumption that the strain and stress tensors at a point of the
so-called macro-continuum (see Fig. 1) are volume averages of their
respective microscopic counterpart fields over a pre-specified
Representative Volume Element (RVE) [9,16,17]. That is, by defining
the deformation gradient F and the first Piola–Kirchhoff stress tensor
P as volume averages of their counterpart fields over the RVE [22],
we have

F � 1
V

Z
X

F dV ¼ 1
V

Z
X
ðI þruÞ dV ; ð1Þ

and

P � 1
V

Z
X

P dV ; ð2Þ

where F and P denote, respectively, the deformation gradient and
first Piola–Kirchhoff stress fields of the RVE, V is the volume of
the RVE and r denotes the gradient operator.

Here we focus on RVEs with constituents modelled by hyper-
elasticity. Hence, P and F are related by the general hyperelasticity
potential law

PðxÞ ¼ @wx

@FðxÞ ; ð3Þ

where wx denotes the given free-energy function of point x of the
RVE with respect to its argument F .

By defining the field ~u of displacement fluctuations of the RVE as

~u � u� u�; ð4Þ

with

u�ðxÞ � ðF � IÞx; 8x 2 X; ð5Þ

the deformation gradient field of the RVE can be written as a sum

FðxÞ ¼ F þ eF ðxÞ; ð6Þ

of a uniform deformation gradient coinciding with the macroscopic
deformation gradient and a displacement fluctuation gradient field,eF � r~u: ð7Þ

The RVE equilibrium problem in the present case consists of
finding, for a given macroscopic deformation gradient F , a kinemat-
ically admissible displacement fluctuation field ~u 2V, such thatZ

X
PðF þr~uÞ :rg dV ¼ 0 8g 2V; ð8Þ

where V is the (as yet not defined) space of virtual kinematically
admissible displacements of the RVE.

2.1. Linearised equilibrium and homogenised first elasticity tensor

Crucial to the finite element solution of the non-linear
equilibrium problem at the heart of the homogenisation-based
multi-scale model is the linearisation of the equilibrium Eq. (8).
The linearisation of (8) at a configuration of the RVE defined by
an arbitrary deformation gradient field F ¼ F� consists of finding
d~u 2V, such thatZ

X
A :rd~u :rg dV ¼ �

Z
X

P :rg dV 8 g 2V; ð9Þ

where

AðxÞ ¼ @PðFÞ
@F

����
F¼F�ðxÞ

; ð10Þ

is the microscopic first elasticity tensor field and

PðxÞ ¼ @wx

@F�ðxÞ : ð11Þ

In the present case, it is possible to derive a closed form for the
homogenised first elasticity tensor, i.e. the fourth-order tensor that
expresses the tangential relationship between macroscopic first
Piola–Kirchhoff stress and the macroscopic deformation gradient:

A � @P
@F

: ð12Þ

It can be shown [21,32] that the homogenised first elasticity tensor
has the representation

A ¼ Aavg þ eA ; ð13Þ

where Aavg is the volume average of the microscopic first elasticity
tensor:

Aavg ¼ 1
V

Z
X

A dV ; ð14Þ

and eA is defined by the Cartesian components

eA ijkl ¼
1
V

Z
X

Aijpq½r~ukl�pq dV ; ð15Þ

with ~ukl 2V, being the solutions to the linear variational equationsZ
X
rg : A :r~ukl dV ¼ �

Z
X
rg : A dV

� �
: ek � el 8g 2V: ð16Þ

2.2. RVE kinematical constraints

Different choices of space V will in general result in different
estimates A for the macroscopic elasticity tensor. This is clear from
(15) and (16) as the components of eA depend on the fields ~ukl

which, in turn, are generally dependent upon the choice of V

(see [32] for further details on variational basis and [26,23] for
finite element implementation in the small strain context). The
space V of virtual kinematically admissible displacements defines
the kinematical constraints enforced upon the RVE. The commonly
used constraints are the following:Fig. 1. Multi-scale model. The macro-continuum and the RVE.
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