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a b s t r a c t

Numerical homogenization is an efficient way to determine effective macroscopic properties, such as the
elasticity tensor, of a periodic composite material. In this paper an educational description of the method
is provided based on a short, self-contained Matlab implementation. It is shown how the basic code,
which computes the effective elasticity tensor of a two material composite, where one material could
be void, is easily extended to include more materials. Furthermore, extensions to homogenization of con-
ductivity, thermal expansion, and fluid permeability are described in detail. The unit cell of the periodic
material can take the shape of a square, rectangle, or parallelogram, allowing for all kinds of 2D
periodicities.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The microstructure of composite materials, where two or more
materials are combined to achieve a material with attractive prop-
erties, can often be described by a unit cell, which is periodically
repeated in one or more directions, as illustrated in Fig. 1.

Such periodic, or almost periodic, microstructures can be found
in materials such as fiber composites and bone. Information about
the microstructure can be obtained by e.g. a CT-scan. The tech-
nique described in the following can thereafter be applied to find
the effective properties of the material. For human bone this has
been done by e.g. Hollister [1], who has also been among the first
to apply the technique for the design of metal and polymer im-
plants [2,3].

Assuming length scales where the theory of elasticity can be ap-
plied and perfect bonding between the different materials in the
unit cell, homogenization can be used to compute the macroscopic
composite material properties. Homogenization relies on an
asymptotic expansion of the governing equations, which allows
for a separation of scales. This is valid when there is a clear sepa-
ration between the macro- and microscopic length scales. The the-
ory behind homogenization is covered in detail in several works,
some of the first being [4,5]. Another good theoretical introduction
to the subject can be found in [6].

According to the theory of homogenization, the macroscopic
elasticity tensor EH

ijkl of a periodic composite material can be com-
puted as:

EH
ijkl ¼

1
j V j

Z
V

Epqrs e0ðijÞ
pq � eðijÞpq

� �
e0ðklÞ

rs � eðklÞ
rs

� �
dV ð1Þ

where jVj denotes the volume of the unit cell, Epqrs is the locally
varying stiffness tensor, e0ðijÞ

pq are prescribed macroscopic strain
fields (in 2D there are three; e.g. unit strain in the horizontal direc-
tion (11), unit strain in the vertical direction (22), and unit shear
strain (12 or 21)), while the locally varying strain fields eðijÞpq are de-
fined as:

eðijÞpq ¼ epq vij
� �

¼ 1
2

vij
p;q þ vij

q;p

� �
ð2Þ

based on the displacement fields vkl found by solving the elasticity
equations with a prescribed macroscopic strain
Z

V
EijpqeijðvÞepqðvklÞdV ¼

Z
V

EijpqeijðvÞe0ðklÞ
pq dV 8v 2 V ð3Þ

where v is a virtual displacement field. For most practical problems
the homogenization is performed numerically by discretizing and
solving Eq. (3) using e.g. the finite element method. This is often re-
ferred to as numerical homogenization. The numerical homogeniza-
tion procedure is also well described in the literature. One of the
first detailed descriptions of the procedure can be found in [7],
while [8–10] provide a three paper review of both numerical
homogenization and how it is used in conjunction with topology
optimization to design periodic materials.

However, the implementation can still seem daunting, and with
the small and self-contained Matlab example provided in Appendix
A, we try to lower the barrier for using numerical homogenization.
The code computes the homogenized elasticity tensor for a two
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material composite. A detailed description of the implementation
is provided in Section 2, while examples of extensions to three
material composites, homogenized thermal expansion, and ther-
mal conductivity are given in Section 3. Section 4 is devoted to a
slightly more involved extension of homogenized permeability.

2. Matlab implementation

In the basic Matlab implementation we treat the case of a com-
posite consisting of two materials. The unit cell is discretized using
bilinear finite elements (plane strain elements are used, but plane
stress can be specified by providing modified material data), and
an indicator matrix x specifies whether a finite element contains
material 1 (xe = 1) or material 2 (xe = 2).

In Fig. 2 the structure of the mesh used to discretize the unit cell
and the indicator matrix x are illustrated. Fig. 2b also shows how
the geometry of the unit cell is specified in the Matlab code. The
homogenization function needs six user specified inputs. The two
first arguments (lx and ly) are the width, lx and height, ly, of the
unit cell. The third argument (lambda) is a vector containing
Lame’s first parameter for material 1 and for material 2. Similarly,
the fourth argument (mu) is a vector with Lame’s second parameter
for the two materials. The fifth argument (phi) is the angle, /, be-
tween the horizontal axis and the left wall in the unit cell. Finally,
the sixth argument is the indicator matrix x. The discretization is
determined from the size of x; number of rows equals number of
elements in the vertical direction, and number of columns equals
number of elements in the horizontal direction.

Remark the angle / should be given in degrees and to avoid
overly distorted elements it should not be smaller than 45� nor lar-
ger than 135�. As discussed in [11] a parallelogram unit cell allows
for the analysis of general periodic materials, including polygonal
cells.

Calling the function in Appendix A as:

x = randi([1 2],200)

homogenize(1,1,[.01 2],[0.02 4],90,x)

will compute the effective properties of a random microstructure
consisting of two materials, where the stiff material has an elastic-
ity modulus of about 100 times the soft material. The homogeniza-
tion is done by discretizing the unit cell with 200 times 200
bilinear elements, since that is the size of x. The different parts
of the homogenization procedure implementation are explained
in detail in the following.

If only a single material is used the stiffness will be
constant throughout the unit cell resulting in zero displacements
i.e. eij = 0 and the original stiffness is obtained when applying Eq.
(1).

2.1. The element stiffness matrix and load vectors (lines 17 and 86–
125)

The elasticity equation from (3) can be discretized using the fi-
nite element method. The left hand side, i.e. the stiffness matrix,
yields:

K ¼
XN

e¼1

Z
Ve

BT
e CeBedVe ð4Þ

where the summation denotes the assembly of N finite elements.
The matrix Be is the element strain–displacement matrix, Ve is the
volume of element e, and Ce is the constitutive matrix for the ele-
ment, which for an isotropic material (we assume the materials
used to build the composite are isotropic) is:

Ce ¼ ke�

1 1 0
1 1 0
0 0 0

2
64

3
75þ le �

2 0 0
0 2 0
0 0 1

2
64

3
75 ð5Þ

where ke and le are Lamé’s first and second parameter for the mate-
rial in element e, respectively. Lamé’s parameters can be computed
from Young’s modulus E and the Poisson’s ratio m using the
relations:

k ¼ mE
ð1þ mÞð1� 2mÞ ; l ¼ E

2ð1þ mÞ ð6Þ

And to get plane stress properties Lamé’s first parameter must fur-
ther be modified as follows:

k̂ ¼ 2lk
kþ 2l

ð7Þ

In the initialization the element stiffness matrix is split into two
corresponding parts, such that the stiffness matrix is a function of
the material properties in the elements:

Fig. 1. A section of a 2D periodic microstructure consisting of two materials (white
and black). The red line encloses a square unit cell, the blue a rectangular unit cell,
and the green a parallelogram unit cell. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

(a) (b)

Fig. 2. (a) Illustration of finite element mesh used to discretize unit cell (element numbers are big, and degrees of freedom are small) and (b) corresponding structure of
indicator matrix x.
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