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a b s t r a c t

In this paper, the ductile fracture of Al-alloy 5052 is studied by experiments and simulations using a mod-
ified Rousselier model. Although tension failure has been successfully predicted by the classical Rousse-
lier model, its predictive capability on shear failure was seldom discussed. A modified Rousselier model
was proposed by incorporating the recent extended damage evolution model by Nahshon and Hutchin-
son. The modified Rousselier model can capture both tension and shear failure. A stress integration algo-
rithm based on the general backward-Euler return algorithm for this constitutive model was developed
and implemented into finite element model by the user defined material subroutine VUMAT in the ABA-
QUS/Explicit. The tensile tests of smooth round bar and notched round bars with different sizes were car-
ried out to investigate the mechanical behavior of Al-alloy 5052. Consequently, the material parameters
of the classical Rousselier model were identified by an inverse method using these experimental data. A
shear test was also performed to calibrate the new shear damage coefficient in the modified Rousselier
model. For the shear test, the simulations show that although shear failure can be predicted by the Rous-
selier model, the ductility was over-estimated. However, the modified Rousselier model can give more
accurate results. The simulations on uniaxial tension of the round bars also confirm that the modified
Rousselier model can well predict the cup-cone fracture mode. The results indicate that the Lode param-
eter in the new damage evolution model is important to capture the cup-cone fracture mode transition.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that when metal fractures, microvoids will
experience a complex process, including the nucleation, growth
and coalescence. In order to describe this damage and fracture pro-
cess, many ductile fracture models using local approaches have
been published. In the view of macroscopic phenomenology, the
Gurson model in [1] developed well in the past decades. The cali-
bration methods for Gurson model were proposed [2,3] and it
was widely used in the prediction of ductile fracture in [4–6].

The mean stress rm = rkk/3 and effective stress
req ¼ ð3rd : rd=2Þ1=2 play important roles in ductile fracture [1],
but the relation between the effective plastic strain at fracture
and the stress triaxiality (g = rm/req) is not generally monotonic
[7,8]. Also, some experiments in [9] show that the ductility and
fracture mechanism of metals is also influenced by the Lode
parameter. More and more tests show that the damage in material
is influenced by shear deformation as well as tension [10,11]. But
the void evolution function used in Gurson’s model showed limita-
tions in recent years for its inapplicability to localization and frac-

ture for low triaxiality or shear-dominated deformations [12]. So, a
non-dimensional metric of stress xðrÞ was recommended to dis-
criminate between axisymmetric and shear-dominated stress
states in [12]. And then an extension of the damage growth func-
tion was proposed which incorporates damage growth under low
triaxiality such as shear-dominated state [12]. The modified Gur-
son model was utilized to simulate quasi-static punch-out tests
of high ductility DH36 steel in [13]. In [14], a whole calibration
procedure for this model was given using a finite element (FE)-
based inverse method. The predictive capability of the modified
Gurson model was evaluated in [15,16] by a series of experiments
and simulations. In [17], a shear void nucleation term based on the
Lode parameter for plastic strain rate is used to model slant frac-
ture by Morgeneyer and Besson. In [18], Li et al. research shows
that the applicability of the ductile fracture criteria depends on
the use of suitable damage evolution rules and consideration of
several influential factors, including the Lode parameter, etc.

After Rousselier published his damage model based on contin-
uum damage mechanics in [19–21], some numerical computa-
tional methods and simulations have been done in [22–32],
aimed at proposing robust and reliable FE formulations and devel-
oping this model to a non-local and mesh independent model, etc.
The recent research on the Rousselier model in [23] shows that the
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cup-cone fracture mode in tension test of notched round bar can be
predicted. In [30,31], the Rousselier model’s predictive applicabil-
ity under shear deformation was mentioned but has not been as-
sessed yet. In this paper, the capability of the Rousselier model is
assessed and it is shown that some modifications on damage evo-
lution are required.

2. Modified Rousselier model

In this section, a brief introduction of the Rousselier model is gi-
ven and followed by its modification. Rousselier developed the
simplest possible model of porous metal plasticity in the frame-
work of thermodynamics of irreversible processes in [19]. The
material’s isotropy and elastic-plasticity with isotropic hardening
are assumed in this model. Two internal variables are used to
quantify the deterioration process of material, one is the equiva-
lent plastic strain p and the other is the so-called damage variable
or void volume fraction f. The Rousselier damage model includes
yield potential, stress strain relation, normality rule, and the evolu-
tion of damage variable. The yield potential is written as Eq. (1), so
it is a coupled constitutive equation in which the damage accumu-
lation and hydrostatic stress are incorporated.

U ¼ req

q
� RðpÞ þ Dfr1 exp

rm

qr1

� �
¼ 0 ð1Þ

where r ¼ rd þ rmI is the Cauchy stress tensor, rd is the deviatoric
tress tensor, rm is hydrostatic stress, I is the second order unity ten-
sor, req ¼ ð3rd : rd=2Þ1=2 is the von Mises equivalent stress,
q = (1 � f)/(1 � f0) is the relative density, f is the damage variable
or void volume fraction, f0 is the initial void volume fraction in
the material, R(p) is the hardening function of the material,
p ¼ ð2ep

d : ep
d=3Þ1=2 is the equivalent plastic strain, D and r1 are Rous-

selier material constants, usually D = 2 [18–20]. The stress strain
relation or Hooke’s Law is written as the following equation:

r ¼ qE : ee ¼ qE : ðe� epÞ ð2Þ

where E is the elastic modulus tensor, e is the strain tensor, ee and ep

are the elastic and plastic part of strain tensor respectively. Using
the normality rule, the plastic strain rate tensor can be expressed
as Eq. (3).

_ep ¼ _p
@U

@ðr=qÞ ¼
_p

3rd

2req
þ 1

3
Df exp

rm

qr1

� �
I

� �
ð3Þ

It is remarkable that the plastic part of strain tensor can be di-
vided into the deviatoric part and volumetric part by ep ¼ ep

d þ ep
mI;

therefore, the deviatoric part of plastic strain rate tensor can be gi-
ven as:

_ep
d ¼ _p

3rd

2req
ð4Þ

And the volumetric plastic strain rate was derived as the follow-
ing equation:

_ep
m ¼

1
3

_pDf exp
rm

qr1

� �
ð5Þ

The relation between the damage variable with the volumetric
plastic strain rate used in Rousselier model was derived by mass
conservation as the following equation:

_f ¼ 3ð1� f Þ _ep
m ð6Þ

By substituting Eq. (5) into Eq. (6), the evolution rate of the
damage variable can be written as a function of the equivalent
plastic strain rate and mean stress:

_f ¼ Df ð1� f Þ exp
rm

qr1

� �
_p ð7Þ

According to Nahshon and Hutchinson in [12], the void growth
is no longer directly tied to the plastic volume change as it is in the
original model, and simply treated as a parameter measuring the
damage accumulation in the material. It is recommended that
the void evolution rate can be written as Eq. (8) with an additional
phenomenological term. It results in a maximum effect for pure
shear and no effect for axisymmetric stress states.

_f ¼ 3ð1� f Þ _ep
m þ kxfxðrÞ

rd _ep
d

req
ð8Þ

Here kx is the shear damage coefficient, which sets the magnitude
of the void coalescence rate in shear deformation [12–16]. And the
invariant measure xðrÞ is given by

xðrÞ ¼ 1� n2 ¼ 1� 27J3

2r3
eq

 !2

ð9Þ

J3 ¼ detðrdÞ ¼ ðrI � rmÞðrII � rmÞðrIII � rmÞ ð10Þ

Here n ¼ 27J3
2r3

eq
is the Lode parameter in [18], or normalized third

invariant in [16] and lies in the range �1 6 x 6 1, J3 is the third
stress invariant of the deviatoric tress tensor rd, rI, rII and rIII are
the principal stresses of the tress tensor r and are assumed to be
ordered as rI P rII P rIII. The non-dimensional metric in Eq. (9)
lies in the range 0 6 x 6 1 to discriminate between axisymmetric
and shear-dominated stress states. For all axisymmetric stress
states, x = 0. And for all states comprised of a pure shear stress plus
a hydrostatic contribution, x = 1 (see details in [12]). Here, the Lode
angle h could be introduced as Eq. (11), which is the same definition
as in [10].

cosð3hÞ ¼ 27J3

2r3
eq

ð11Þ

Then the relation between the non-dimensional metric xðrÞ
and the Lode angle could be introduced as

xðrÞ ¼ sin2ð3hÞ ð12Þ

Substitute Eqs. (4) and (5) into Eq. (8), then a new damage evo-
lution rule could be derived as the following equation:

_f ¼ Df ð1� f Þ exp
rm

qr1

� �
þ kxfxðrÞ

� �
_p ð13Þ

When elasticity is neglected, the mean stress rm = 0, and xðrÞ
keeps as constant, Eq. (13) can be transferred to an ordinary differ-
ential equation

df
dp
¼ Df ð1� f Þ þ kxxðrÞf ð14Þ

With f0 as the initial void volume fraction, the analytical solu-
tion can be derived as:

f ¼
ðDþ kwxðrÞÞf0

ðDþ kwxðrÞ � Df0Þe�ðDþkwxðrÞÞp þ Df0

ð15Þ

Then for the shear stress state, the solution can be particular-
ized with D = 2, and xðrÞ ¼ 1 as

f ¼ ð2þ kwÞf0

ð2þ kw � 2f 0Þe�ð2þkwÞp þ 2f 0
ð16Þ

By substituting f0 = 10�4 and different kw = 0.0, 0.5, 1.0, 1.5 into
Eq. (15), the evolution of damage variable with respect to the
equivalent plastic strain p can be obtained as Fig. 1. It can be seen
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