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a b s t r a c t

In order to understand the effect of Si on various properties in bcc Fe, first-principles calculations are
employed to investigate the elastic, electronic, and bond characteristic of Fe–Si system with the main
focus on dilute Si up to 12.5 at.%Si concentrations based on electronic structure calculations. The
stress–strain method for elasticity are performed to obtain the elastic constants of dilute Si in bcc Fe
at 0, 2.4, 5.6, 8.3, 10.9, and 12.5 at.%Si. The calculated elastic properties show significantly change beyond
8.3 at.%Si. The bulk to shear modulus ratio indicate the ductile to brittle transition as the Si content
increases beyond 8.3 at.%. Electronic density of states, local magnetic moment, and force constants results
indicate different Fe–Si bond characteristic between above and below 8.3 at.%Si concentrations which can
be taken as the combined effect of the magnetic property and the ordering tendency from bcc solid solu-
tion to partial ordering of D03 around 10.9 at.%Si.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Silicon steel (Si dilute Fe–Si alloys) has excellent magnetic and
mechanical properties. Depending on compositions and manufac-
turing processes, wide range of properties can be achieved such
as small hysteresis, high permeability, or nearly zero magnetostric-
tion constant [1–4]. Thus, it is widely used in transformers, motors,
magnetic coils, and structural materials due to better corrosion
resistance than carbon steel. Phase diagram of Fe–Si system [5]
shows that, as Si content increases, there are three bcc-based struc-
tures from a disordered bcc (A2) to two ordered bcc (B2 and D03).
At high temperature and low Si contents, A2 structure is presented.
As the Si contents increase B2 becomes stable and D03 appears.
Typical silicon steel has silicon content from 2 up to 6.5 wt.%.
Increasing the Si content from 2–3 to 5–6 wt.% improves yield
stress without decreasing ductility. However, at Si concentration
beyond 4.5 wt.%, the ductility decreases significantly [6]. It is be-
come more difficult to form, i.e. cold roll into thin sheet, for the
high Si content steel. Several processing techniques have been
investigated [7–12] to produce higher Si content for Fe–Si alloys
but mostly are not suitable for industrial scale. Poor ductility at
higher Si concentration inhibits further development for this alloy
for an industrial applications. Understanding the behavior, mecha-

nism, or origin of the decreasing ductility might be enabling a fur-
ther development of higher Si content steel.

The present work aims at investigating the behavior of dilute
bcc Fe as the Si concentrations increase up to 12.5 at.% through
the first-principles calculations. The goal is to explain the Si
concentration dependence of the ductility and figure out the main
factors which dominant the phenomenon. Section 2 details the
first-principles calculations used in this work. Elastic constants
and force constants procedures are also provided. In Section 3,
we present the results of our calculations from elastic, electronic,
and force constant data for different Si concentration of dilute
bcc Fe up to 12.5 at.%Si. The concentrations dependent elastic
properties such as elastic stiffness, bulk modulus, shear modulus,
and Young’s modulus will be discussed. The effect of Si to the
ground state electronic properties of dilute bcc Fe will be investi-
gated. Force constants between different types of atoms will also
presented. From various properties discussed in Section 3, we try
to figure out the main reason behind the lower ductility in silicon
steel at higher silicon concentration.

2. Methodology

2.1. First-principles calculations

All the calculations in this study are based on density functional
theory (DFT) which implemented in the Vienna Ab-initio Simula-
tion Package (VASP) [13,14]. Projector augmented wave (PAW)
method is used to describe the electron–ion interactions [15].

0927-0256/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.commatsci.2012.12.028

⇑ Corresponding author.
E-mail addresses: aksaengdeejing@rift.mech.tohoku.ac.jp, aksaengdeejing@

gmail.com (A. Saengdeejing).

Computational Materials Science 70 (2013) 100–106

Contents lists available at SciVerse ScienceDirect

Computational Materials Science

journal homepage: www.elsevier .com/locate /commatsci

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.commatsci.2012.12.028&domain=pdf
http://dx.doi.org/10.1016/j.commatsci.2012.12.028
mailto:aksaengdeejing@rift.mech.tohoku.ac.jp
mailto:aksaengdeejing@gmail.com
mailto:aksaengdeejing@gmail.com
http://dx.doi.org/10.1016/j.commatsci.2012.12.028
http://www.sciencedirect.com/science/journal/09270256
http://www.elsevier.com/locate/commatsci


The exchange and correlation are treated using generalized gradi-
ent approximation (GGA) of Perdew–Burke–Ernzerhof (PBE) [16].
The PAW potential set comprised of a 3d74s1 valence configura-
tions for Fe and 3s23p2 for Si. Spin polarized calculations are in-
cluded for all calculations. During the structure relaxation, the
total energies from VASP are calculated by integration over a
Monkhorst–Pack [17] mesh of k-points in the Brillouin zone inte-
gration using Methfessel–Paxton order 1 smearing method [18]
for smearing electronic occupation. The final self-consistent static
calculation with the linear tetrahedron method including Bl€ochl
correction [19] are performed after the structure relaxation. A
350 eV cutoff energy and k-points meshes are adopted to provide
the convergence of electronic energies to a least 0.1 meV per for-
mula unit for all calculations.

2.2. Elastic constants calculations

Elastic constants (cij) are calculated from completely relaxed
structures using stress–strain approach based on the Le Page
and Saxe [20]. A set of strains (e = e1,e2,e3,e4,e5, and e6) are
applied to the completely relaxed structures via the following
equation:

R ¼ R

1þ e1 e6=2 e5=2
e6=2 1þ e2 e4=2
e5=2 e6=2 1þ e3

0
B@

1
CA ð1Þ

where R and R are deformed and fully relaxed structure, respec-
tively, e1, e2, e3 refer to normal strains and e4, e5, e6 refer to shear
strains. For the Im�3m symmetry, one set of strains is sufficiently
to determine the elastic constants. Because of Si atom is replaced
one of the Fe atom, the total of twelve independent strains (six
independent negative and six independent positive) are used for
each structure to obtain the elastic constant. The corresponding
stresses (r = r1,r2,r3,r4,r5, and r6) are obtained from VASP.
From twelve set of independent strains and twelve set of stresses
(r), elastic constants are calculated by solving the following
equation:

cij ¼ e�1
ij rij ð2Þ

where cij are elastic stiffness, eij and rij are strains and stresses,
respectively. Due to the symmetry of bcc lattice, only c11, c12, and
c44 are independent. The bulk (B), shear (G), and Young’s modulus
(E) are calculated using Voigt’s method [21]:

B ¼ C11 þ 2C12

3
ð3Þ

G ¼ C11 � C12 þ 3C44

5
ð4Þ

E ¼ 9BG
Gþ 3B

ð5Þ

where

C11 ¼
c11 þ c22 þ c33

3
ð6Þ

C12 ¼
c12 þ c13 þ c23

3
ð7Þ

C44 ¼
c44 þ c55 þ c66

3
ð8Þ

2.3. Force constant calculations

Force constants are obtained from the component in Hessian
matrix calculated using density functional perturbation theory
implemented in VASP. Force constant between atoms i and j (Ui,j)
is defined from the following equation:

Ui;j ¼
@2E

@li@lj
ð9Þ

where E is the total energy, li and lj are displacements of the atom i
and j. Two different types of force constants (stretching and bend-
ing) are calculated. Stretching is respected to the displacement of
atom along the bond while bending is respected to the bond angle.

3. Results and discussions

Different concentrations of Si in the bcc lattice are achieved
through supercells of standard bcc primitive cell [22]. By changing
supercell size and substituting one Si atoms in the supercell, differ-
ent Si concentrations from 2.7 up to 8.3 at.%Si can be achieved.
Fig. 1a–c illustrates the supercell represented different Si concen-
trations from 2.7 up to 8.3 at.%Si. For the Si concentration higher
than 8.3%, 64 atoms supercell that also based on the bcc primitive
cell was used which 7 and 8 Fe atoms inside the supercell are re-
placed by Si atoms in order to achieve the Si concentration of
10.9 and 12.5 at.% respectively. Fig. 1d illustrate 64 atoms supercell
that represented 10.9 at.%Si. For 12.5 at.%Si, Si atoms are distrib-
uted evenly to achieve the maximum distances among Si atoms.
Fig. 2a–e shows different Si configurations for supercell tested for
12.5 at.% case to ensure that the most stable configuration is real-
ized. First-principles calculations on a supercell of D03 (Fe3Si)
structure with half of Si atom replaced with Fe atom is also carried
out to compare with the 64 atom supercell at 12.5 at.%. Fig. 2f
shows the D03 structure representing 25.0 at.%Si. Based on D03

structure, 32 atoms supercell with half of Si atoms replaced by
Fe atoms are used to represent the D03 structure at 12.5 at.%Si
concentration.

Fig. 3 shows calculated elastic properties including c11, c12, c44,
bulk modulus (B), shear modulus (G), and Young’s modulus (E) at
different Si concentrations. The mechanical stability of the struc-
ture at each concentration can be judged from calculated elastic
stiffnesses. According to Born’s criteria [23], bcc structure is
mechanical stable when the following conditions are met:

c11 � jc12j > 0
c11 þ 2c12 > 0

c44 > 0
ð10Þ

For all calculated structures ranging from 0 to 12.5 at.%Si, all of the
calculated values from Eq. (10) are greater than zero. This mean that
all of the calculated structures in this work should be mechanically
stable at 0 K. The values of c11 � jc12j are decreased and extrapo-
lated to negative around 25 at.%Si. Experimental data [24] also
show the decreasing in c11 � jc12j value. Meanwhile, the thermody-
namic stability of these dilute solid solutions can be also investi-
gated by the calculated formation energies for each system with
respect to the Fe-bcc and Si-diamond as reference states, as shown
in Fig. 4. It can be seen that perfect ordered D03 structure have for-
mation energy about �31.5 kJ/mol-atom. Drawing a tie line be-
tween pure Fe and D03 energy which stands for the segregation
limit of Fe-bcc and D03 structure, once can see that all the calcu-
lated systems are located slightly up the line. which indicating that
none of the solid solution are stable in this low Si range compared
to separation to pure Fe and D03 at 0 K. Meanwhile, the very small
energy differences of these solid solution structures to the lie line
suggest that as the temperature increases, entropy contribution
from the mixing between Fe and Si atoms will lower the free ener-
gies of the solid solution structures to enable their presence stable
states. Furthermore, at 12.5 at.%Si, it is noticed a lower energy of the
partial ordering D03 than all energies of disordered configurations
at this concentration, predicting the possibility of appearance of
D03 ordering. Ohnuma et al. [25] calculated phase diagram of the
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