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a b s t r a c t

In this work a generalized continuum formulation is introduced which is based on a theoretical frame-
work of a generalized deformation description proposed by Sansour (1998) [25]. That is the deformation
field is composed by macro- and micro-components according to the consideration that the generalized
continuum consists of a macro- and micro-continuum. It is demonstrated that by specific definition of the
topology of the micro-space this generalized deformation formulation allows for the derivation of a gen-
eralized variational principle together with corresponding strain measures and underlying equilibrium
equations. The approach makes use of a macroscopic rotation field which is considered to be element
of the Lie group SO(3) and independent of the macroscopic displacement field. In that way the formula-
tion incorporates three additional rotational degrees of freedom and is closely related to the Cosserat
continuum. In contrast to the conventional Cosserat continuum the proposed generalized formulation
allows to describe multiple scale effects associated with multiple micro-structural directions, possibly
with a different magnitude for each one. The approach considers a geometrically exact description of
finite deformation within the macro-continuum, but as a first step linearises the deformation within
the micro-continuum. The constitutive law is defined at the microscopic level and the geometrical spec-
ification of the micro-continuum is the only material input which goes beyond that needed in a classical
description.

Various meshfree computations demonstrate that this model is able to address fundamental physical
phenomena which are related to the underlying micro-structure of the material, in particular scale-
effects and oriented material behaviour. Clear differences are revealed between a classical and the
non-classical formulation.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Within the last decades the development of generalized contin-
uum models have attracted much interest. The range was spanned
from theories designed for very specific physical phenomena to
frameworks which had unifying ambitions and were basis for var-
ious approaches which were derived from them. Usually, general-
ized continua are linked with continuum mechanics theories
accounting for degrees of freedom additional to the classical dis-
placement field. Considering only extra rotational degrees of free-
dom Eringen and Kafadar [10] used the term micropolar continuum.
The origin of this kind of continuum, however, traces back as far as
to the Cosserat brothers [8] or even Voigt [38]. The common idea is
the micro-structure motivated deformation description and provi-
sion for an internal length associated with the characteristic size of
the material’s underlying micro-structure. Accordingly, isotropic

micropolar elastic solids account for at least one material constant
more. Furthermore, each material point is equipped with a set of
directors, the deformation of which gives rise to higher-order
strains and stresses. Within the context of micropolar continua
these directors only perform in terms of rigid body rotations so
that besides the conventional displacement field the deformation
is also characterized by an independent rotation field. Accordingly,
upon application of an external stimulus we find force as well as
couple stress fields (torque per unit area). Experimental validation
of micropolar continuum models are still scarce, e.g. for porous
material such as polymeric foam and human bone [14], circular-
cell polycarbonate honeycomb structures [20], granular material
[37] or plastic hardening of thin copper wires [12].

Initially, the focus of micropolar continuum theories was drawn
to the elastic case and often, only the small strain case was envis-
aged. Lippmann [17] and Besdo [4] provided the first attempts to
extend the geometrically linear Cosserat continuum to the realm
of plasticity. It was subsequently discovered that in case of local-
ized deformation the incorporation of an intrinsic length scale pro-
vided remedy concerning the ellipticity loss of the governing
equations and the pathological mesh dependency of finite element
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solutions [22,21,5]. Non-linear continuum theories considering fi-
nite deformation and rotation were proposed by various authors
[3,27,31,33,26,24,35,23].

In contrast to multi-scale computational homogenization tech-
niques, e.g. [34,19,36,13,16] where micro-structural information is
condensed from a separately discretized and solved microscopical
problem, the attractivity of generalized continua is due to the abil-
ity to describe orientation and size of the material constituting par-
ticles solely in mathematical terms and in a completely natural
way. In particular, micropolar continua are predestined to predict
physical phenomena which are related to the micro-structure.
Examples are the modelling of size effects in crystal plasticity as
found in metal alloys [11,7], shear banding in granular material
[39], accounting for interparticle forces and the density variation
of granular media [41] or non-local as well as surface related ef-
fects in electro-elasticity Shen and Hu [30].

The micropolar formulation proposed in this article is derived
from a unified generalized continuum framework [25] exploring
the specific case of rotations as extra degrees of freedom and
examining the consequences of different choices of micro-struc-
tural orientation and intrinsic length with regards to elastic scale
effects and possible anisotropy resulting from these specific
choices. Similar to multi-scale computational homogenization
techniques, this framework also involves micro-structural homog-
enization to average the non-local material response, i.e. (i) the
constitutive law is only defined on micro-structural level, (ii)
macro- and micro-deformations as well as relative deformations
between macro- and micro-spaces are included. A significant dif-
ference, however, is (iii) the incorporation of geometrical and
physical micro-structural information. Here, the mathematical
concept of a fibre bundle is considered to construct a generalized
space. The involved spaces, i.e. generalized, macro- and micro-
space, as well as their tangent spaces are linked with each other
via projection maps. In particular, the tangent of the projection
map defines the geometry of the extra space and so the metric
which is to be used in the evaluation of the integrals over the mi-
cro-space. The concept is rich in its structure, e.g. it allows for the
micro-space to be equipped with further geometric structures such
as curvature, should this be deemed relevant from a physical point
of view. Here, the trivial identity map is chosen, as this is sufficient
to satisfy the primary aim of this work to predict elastic scale ef-
fects as well as oriented material behaviour. Also, the difference
in the number of material parameters in comparison to a classical
formulation is kept to a minimum and is confined to purely geo-
metric ones which describe the micro-continuum.

Finally, another aspect of this approach is worthwhile to be
highlighted. The micropolar continuum is modelled in a very gen-
eral manner opening the door for inelastic formulations consider-
ing the geometrically exact description of finite deformations
within the macro-continuum but accommodating also higher-or-
der deformations within the micro-continuum.

Now, the plan of this work is as follows: In Section 2 the the-
ory of the generalized continuum is outlined followed by Section
3 where the details of a micropolar continuum theory based on
the generalized continuum framework are given. Subsequently,
in Section 4 a micropolar variational formulation is derived.
The suitability of this micropolar approach to model size-scale
effects as well as oriented material behaviour is illustrated in
Section 5 by various applications within the domain of
hyperelasticity.

2. Deformation and strain

The basic idea is that a generalized continuum G can be as-
sumed to inherit the mathematical structure of a fibre bundle

(see e.g. [6]. In the simplest case, this is the Cartesian product of
a macro-space B � Eð3Þ and a micro space S which we write as

G :¼ B � S: ð1Þ

This definition assumes an additive structure of G which implies
that the integration over the macro- and the micro-continuum
can be performed separately. The macro-space B is parametrized
by the curvilinear coordinates #i, i = 1, 2, 3 and the micro-space or
micro-continuum S by the curvilinear coordinates fa. Here, and in
what follows, Greek indices take the values 1, . . . or n. The dimen-
sion of S denoted by n is arbitrary, but finite. Furthermore, we want
to exclude that the dimension and topology of the micro-space is
dependent on #i. As illustrated in Fig. 1 each material point eX 2 G
is related to its spatial placement ~x 2 Gt at time t 2 R by the
mapping

~uðtÞ : G ! Gt : ð2Þ

For convenience but without loss of generality we identify G with
the un-deformed reference configuration at a fixed time t0 in what
follows. The generalized space can be projected to the macro-space
in its reference and its current configuration by

p0ðeXÞ ¼ X and ptð~xÞ ¼ x; ð3Þ

respectively, where p0 as well as pt represent projection maps, and
X 2 B and x 2 Bt . The tangent space TG in the reference configura-
tion is defined by the pair ðeGi � IaÞ given by

eGi ¼
@ eX
@#i

and Ia ¼
@ eX
@fa ; ð4Þ

where the corresponding dual contra-variant vectors are denoted
by eGi and Ia, respectively. A corresponding tangent space in the cur-
rent configuration TGt is spanned by the pair ð~gi � iaÞ given by

~gi ¼
@~x
@#i

and ia ¼
@~x
@fa : ð5Þ

The generalized tangent space can also be projected to its corre-
sponding macro-space by

p�0ðfGiÞ ¼ Gi and p�t ð egiÞ ¼ gi; ð6Þ

respectively, where the tangent vectors Ia are assumed to be con-
stant throughout S for simplicity. Note that the definition of a pro-
jection map is not trivial. The tangent of the projection map defines
the geometry of the extra space and so the metric which is to be
used to evaluate the integral over the generalized space. The con-
cept is rich in its structure.

Fig. 1. Configuration spaces.

114 S. Skatulla, C. Sansour / Computational Materials Science 67 (2013) 113–122



Download English Version:

https://daneshyari.com/en/article/1561269

Download Persian Version:

https://daneshyari.com/article/1561269

Daneshyari.com

https://daneshyari.com/en/article/1561269
https://daneshyari.com/article/1561269
https://daneshyari.com

