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A numerical model based on the use of a level set framework coupled with an anisotropic re-meshing
technique is presented in order to describe the void growth process for 2D and 3D configurations. Inter-
faces of inclusions and voids are described implicitly using level set functions. An anisotropic meshing -
remeshing strategy is employed to track interfaces and ensure the accuracy of finite element calculations.

The matrix and inclusions are elastic—plastic materials. The numerical methodology is adopted to study
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the effect of different parameters such as void or inclusion orientation and domain size. A good agree-
ment is found with available experimental data and those found in the literature. The proposed method
is shown to be an efficient promising technique to study ductile damage stages as void nucleation and
growth. A demonstration of the method potential is illustrated by studying void growth for a 2D real
complex microstructure and for a simple 3D microstructure.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Ductile damage usually involves the nucleation, growth and
coalescence of voids in a plastically deforming material [1]. In
many structural alloys, especially steels, void nucleation occurs
in preferential sites in the neighborhood of secondary particles.
Void nucleation occurs either by inclusions fracture, or by parti-
cles-matrix interfaces debonding. The preferential mechanism of
void nucleation depends on several parameters such as matrix
and inclusions fracture properties, interface properties and the nat-
ure of loading [2,3]. The second ductile damage mechanism is void
growth, which is related to the increase of plastic strain around the
nucleated voids. Finally, for large plastic strain, and when voids are
close to each other, the coalescence phenomenon occurs and final-
ly leads to the appearance of macroscopic cracks.

Several studies have been undertaken to model the ductile dam-
age process at the macroscale. Two main approaches can be distin-
guished: phenomenological continuum models, such as the
Lemaitre model [4] and microscopically based models such as the
model initially defined by Gurson [5] and then extended by Tverg-
aard and Needleman [6]. Phenomenological models do not take into
account the micro-mechanisms of ductile damage, whereas the
Gurson-Tvergaard-Needleman (GTN) model comes from microme-
chanics-based considerations of plastic behavior within the frame-
work of porous metal plasticity. Several extensions of the GTN
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model were developed in order to incorporate void shape effects,
and plastic anisotropy. The GTN model is based on the definition
of laws for void nucleation, growth and coalescence but it still re-
mains a macroscopic approach since it does not track explicitly void
evolution.

With the development of the Finite Element Method (FEM) and
the improvement of calculation capabilities, a new approach to
model the micro-mechanisms of ductile damage was developed.
This approach aims at modeling void nucleation, growth and coa-
lescence explicitly and tries to draw up the void evolution in the
neighborhood of inclusions. This kind of approach was initially
proposed by Needleman [7] and Tvergaard [8] who worked on reg-
ular cylindrical void arrangement in 2D. These approaches on
unit-cell were next extended in 3D [9,10]. These works were
clearly pioneer and many studies have since followed. Several
studies were carried out in order to model void nucleation by con-
sidering a Cohesive Zone Method (CZM) [11-14]. Li and Ghosh [11]
modeled the interfacial debonding in fiber reinforced composites
using such a technique. McVeigh and co-workers [14] also used
this numerical method to explain the mechanisms of nucleation
of voids around particles in a Representative Elementary Volume
(REV) subjected to shear loading. In other studies, the mechanisms
of void growth and coalescence were treated [15-17]. Bandstra
et al. [15,16] studied the deformation localization for void arrays,
based on experimentally observed inclusion microstructures of
steels. The effect of temperature on void growth was examined
by Horstemeyer et al. [17]. The growth and coalescence of voids
after nucleation were treated by McVeigh [14]. His model is based
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on the use of a REV containing particles under shear loading. In
most of these studies, the classical FEM is employed to analyze
strain/stress concentrations, inclusion orientations and shape
effects, and inclusion distribution effects.

Several new finite element techniques were developed more re-
cently to model moving discontinuities (interfaces, cracks) without
remeshing. Among these methods, the eXtended Finite Element
Method (X-FEM) [18-21] is probably one of the most recognized
approaches to deal with discontinuities. This method consists in
enriching elements that are crossed by the discontinuity (cracks
or interfaces). The discontinuity is described by a level set function.
Level Set Methods (LSMs) [18-27] were initially presented by
Osher and Sethian [22] and described in more details by Sethian
[23]. The principle of the method is to represent implicitly an inter-
face by the zero level of a function, called the level set function. In
the X-FEM approach, the finite element approximation space is en-
riched by appropriate functions through the concept of partition of
unity. Thus, material interfaces do not need to be aligned with ele-
ment edges but can intersect the elements arbitrarily while the
accuracy of the finite element approach is retained. The use of level
set functions in the X-FEM framework gave rise to numerous pub-
lications dealing with the modeling of discontinuities in ductile
and brittle fracture [18-21]. Moés and co-workers [18] modeled
crack growth without remeshing and Hettich and co-workers
[20] analyzed interface material failure. The combination of
X-FEM with LSM is also a convenient way to model material
discontinuity at the micro-scale [19-24,25]: Sukumar et al. [19]
modeled voids and inclusions using a combination between LSM
and X-FEM, Legrain [24] and Hiriyur et al. [25] have studied REV
homogenization using real or statistical REV.

The use of enrichment in the X-FEM approach was made ini-
tially to avoid remeshing. Indeed remeshing can become an issue
when dealing with 2D or 3D complex geometries and large strain.
In recent studies [26], the X-FEM framework is applied for large
plastic strain, but without remeshing. However, when large strain
occurs, some elements get distorted, giving rise to poor finite ele-
ment accuracy. Automatic remeshing is a useful way to preserve
elements quality in such configurations.

The method presented in this paper is also based on LSM meth-
od but, contrary to X-FEM, discontinuities are tracked using aniso-
tropic mesh adaptation. This approach is particularly well suited to
deal with large strains.

In this paper, an enhanced anisotropic remeshing procedure is
used. This mesh adaptation is employed in a very efficient way to
capture inclusions’ and voids’ interfaces which are described using
level set functions. These interfaces are tracked accurately all along
the simulation of void growth thanks to automatic anisotropic
meshing adaptation. In addition, the geometric mesh adaptation
around inclusions’ and voids’ interfaces is combined to a mesh
adaptation based on computed mechanical fields. This method is
shown to be effective in modeling void growth in an elastic—plastic
media. In Section 2, the finite element model and the remeshing
strategy are detailed. Numerical results are presented in Section
3. The model is first validated on a simple configuration. The
influence of inclusions’ configurations on void growth is then ad-
dressed in more details. Then, in order to illustrate the potential
of the method, an application based on a real Scanning Electron
Microscopy (SEM) picture is shown. Finally, a 3D configuration is
presented to illustrate the ability of our framework to deal with
3D microstructures.

It is important to underline that in the present study, nucleation
of voids due to inclusion/matrix debonding or inclusions’ fracture
will not be modeled. Voids are already existing in the initial config-
uration of the microstructure; only the growth mechanism will be
simulated. In this context, a classical multi-domain finite element
framework could be used. In fact a model based on an explicit

description of the matrix and the inclusions, coupled with the pro-
posed meshing-remeshing technique, without accounting for the
void part could be envisaged. This approach would require the
use of one mesh for each domain and the introduction of contact
conditions. However, the strategy described here is a part of a lar-
ger goal, consisting in modeling the three natural stages of ductile
damage using the same formalism. In this purpose, a precise mod-
eling of topological events due to debonding or inclusions’ fracture
could not be envisaged in a classical multi-domain finite element
formulation. The validation of the mechanical resolution method-
ology and of the meshing strategy of this global framework is pre-
sented in the present document whereas the introduction of a void
nucleation criterion and a coalescence criterion, will be detailed in
a forthcoming publication.

2. Finite element model and remeshing strategy

In the present work, a level set framework is used to model par-
ticles’ and voids’ interfaces. The initial FE mesh, independent of the
different phases, is coarse and isotropic. This initial mesh will be
anisotropically adapted to describe accurately the geometry of
the domains (matrix, inclusions, voids) and to deal with disconti-
nuities in material properties. This is an implicit description of
heterogeneities.

2.1. Level set framework

Interfaces (particles and matrix interfaces) are implicitly de-
scribed thanks to a level set framework as in [27-30]. In fact, the
set of particles and the matrix are described, respectively, by a
signed distance function, ¢; and ¢, defined over the domain Q2
which gives at any node x of the finite element mesh the distance
to the corresponding interface (I'; and I'},). Furthermore, the sign
convention ¢, > 0 (resp. ¢, > 0) inside the part of the domain cor-
responding to the inclusions denoted €; (resp. inside the part of
the domain corresponding to the matrix denoted Q,,), and ¢; <0
(resp. ¢m < 0) outside the inclusions (resp. outside the matrix) is
adopted. In turn, both types of interfaces are given by the zero level
of the corresponding distance function:

@i(X) = (g, (%) = 2o, ()X, T't), @1 (X) = (Yg,, (%) = Xg, (X))AX, T'm),X € 2
I'i=0Qi={x € Q/p;(x) =0}
I'm=0Qn={xcQ/p,,(x)=0}

(1)

where d(x,I") defines the distance between node x and interface I”
and yp(x) corresponds to the characteristic function of the domain
D.

As the set of the different phases correspond to a partition of the
domain, it is easy to determine to which phase each finite element
nodes belongs using the following rules:

XeQi<=@;x)=0
XeQp<=¢,x)=0
x € Q,(void part of the domain) < ¢, (x) = —max(@;(x), ¢, (X)) =0
@)

where ¢v defines the void interfaces.

The level-set functions are computed at nodes, a linear interpo-
lation is used for the transport step between each remeshing oper-
ation. The level-set functions are transported with the lagrangian
deformation of the mesh. This lagrangian deformation of the mesh
does not keep the distance properties of the initial level set func-
tion (i.e. the gradient value of the level set function remains not
equal to one during the deformation).

If this deviation is not an issue to determine the material phase
(Eq. (2) does not require the evaluation of the distance values), it is
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