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a b s t r a c t

Currently, almost all material manufacturing processes are simulated using methods based on continuum
approaches such as the Finite Element Method (FEM). These methods, though widely studied, face diffi-
culties with multibody, contact, high-strain and high-displacement problems, which are usually found in
manufacturing processes. In some cases, the Discrete Element Method (DEM) is used to overcome these
problems, but it is not yet able to simulate some of the physics of a continuum material, such as 3D heat
transfer.

To carry out a realistic simulation of a process, its thermal field must be properly predicted. This work
describes a fast and efficient method to simulate heat conduction through a 3D continuum material using
the Discrete Element Method. The material is modelled with spherical discrete elements of different sizes
to obtain a compact and isotropic domain adequate for carrying out mechanical simulations to obtain
straightforward thermal and mechanical coupling.

Thermal simulations carried out with the proposed Discrete Element Method are compared to both the
analytical and FEM results. This comparison shows excellent agreement and validates the proposed
method.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The importance of temperature fields in almost any manufactur-
ing method is indisputable. Due to the very strong dependence of
metallurgical phenomena on these fields, they critically influence
the mechanical properties of the processed material. Consequently,
the search for a realistic thermal simulation of a process, including
accurate temperature predictions, is an issue of capital importance
for the desired full control of manufacturing techniques.

A law for heat conduction through a continuous material was
first proposed by FOURIER in 1822 [1] (Eq. (1) in the case of constant
conductivity where H is the temperature, k is the thermal conduc-
tivity, q is the density of the material, and t represents the time).
This equation provides analytical solutions for some geometrically
simple problems [2] and has been widely solved using various
numerical methods, but primarily by the Finite Element Method
[3] due to its natural adaptation to partial differential equations.
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In tooling processes, regions with high thermal gradients and
heat fluxes are often located near the tool-piece contact. In the
contact area, continuous approaches have difficulty accurately

describing high strains and temperature gradients. In this area,
the Discrete Element Method [4] is a good alternative to the FEM
to locally solve problems related to material fracture [5], multi-
body system coupling [6] or dry sliding contact with a third body
presence [7], among others. A long term solution consists of solv-
ing the contact area with the DEM and solving the piece and tool
far from the contact with continuous approaches, such as the
FEM or the NEM [8], and then coupling these methods (Fig. 1).

There are many works that describe the use of the Discrete
Element Method in a mechanical field such as [9], which uses
LENNARD–JONES potentials [10] to describe the interaction forces
between discrete elements, the work in reference [11], where
discrete elements are linked in a truss, and exact results for the
stress and strain fields of 2D shells are obtained, or [12], which
links discrete elements by beams and describes how to carry out
wear simulations for brittle elastic materials.

However, examples of the DEM in thermal fields are mostly fo-
cused on problems involving granular materials [7,13–17], with
the exception of [18], in which the mathematical proof of the 2D
DEM for a continuous thermal field is described.

The present work describes a method to simulate isotropic heat
conduction through a 3D continuum material using the Discrete
Element Method. The material is modelled with spherical discrete
elements of different sizes to obtain a compact and isotropic do-
main adequate for carrying out 3D mechanical simulations [12].
The validity of the described method in such a discrete domain is
the basis for thermo-mechanical simulations using the DEM.
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The paper is structured as follows: In Section 2 a description of
the method is given. This method is proved in Section 3 for 3D
crystal domains and in section 4 for isotropic domains. In Section 5
numerical results are shown and discussed. Finally, conclusions are
inferred in Section 6.

2. General description of the method

Fig. 2 shows a typical discrete domain created exclusively with
spherical discrete elements.

To find the variation of a given magnitude through a discrete
domain, there are two principal steps to follow, as explained in
[13]:

� First, variations due to the interaction between each discrete
element and all its neighbours must be separately analysed
and stored.
� Then, stored variations of each discrete element must be

summed to obtain the total variation of the magnitude for the
discrete element.

Mathematically:

Gi ¼
XNneigh

gij ð2Þ

where Gi is the variation of the measured magnitude for the discrete
element i and gij is the variation of the magnitude of discrete ele-
ment i due to its interaction with its neighbour j.

2.1. Application to heat conduction

In the particular case of heat conduction, transferred heat be-
tween two discrete elements for a given instant, Wij, can be calcu-
lated using Fourier’s law as follows:

Wij ¼ Stk
ðhj � hiÞ

dij
ð3Þ

where St is the heat transmission surface’s area; (hj � hj) is the tem-
perature difference between discrete element i and discrete ele-
ment j; k is the material’s heat conductivity and dij is the distance
between discrete element i and discrete element j.

Furthermore, the thermal energy gain of a discrete element i,
DEi in the equation, can be calculated as a function of its rise in
temperature:

DEi ¼ cpqdViDhi

where cp is the specific thermal capacity of the discrete element; qd

represents the discrete element’s density; Vi is the volume and Dhi

is the raise of temperature of a discrete element i.
The time derivative of the thermal energy gain represents the

heat being transferred to discrete element i:

DEi

Dt
¼Wij ¼

cpqdVi Dhi

Dt
ð4Þ

If the time step Dt is small enough to consider (hj � hi) constant
during the time step, Eqs. (3) and (4) can be combined to obtain the
temperature rise of discrete element i due to its interaction with a
neighbour j:

Dhi ¼
ðhj � hiÞStk
dijcpqdVi

Dt ð5Þ

Finally, Eq. (2) is used to obtain DHi, the total variation of the
temperature of discrete element i, after the time step Dt:

DHi ¼
XNneigh

Dhi

3. Proof of concept on 3D crystal domains

In the work by Hahn et al. [18], a method to predict temperature
fields in 2D discrete domains formed by hexagonal discrete ele-
ments is proved. In this section a proof for 3D discrete domains
formed by identically-sized spherical discrete elements placed fol-
lowing a simple cubic crystal pattern will be given, following the
method described in paragraph 2.1.

3.1. Proof

Fig. 3 represents an example of the domain described above. To
fill all of the domain’s volume, each discrete element represents a
cube of continuous material whose volume equals (2R)3.

Eq. (5) can be modified for the particular case of the crystal do-
main of Fig. 3 as follows:

First, the mass of each discrete element must equal the mass of
the represented volume. Then, the discrete element’s density qd is
linked to the material’s density qc by means of the volume fraction
fv following:

Fig. 1. Simplified example of a milling process. Discrete Element Method is used in
the zone in contact with the tool (dotted) in order to simulate complex thermo-
mechanical behaviours. DEM is also used beyond the contact zone (solid) in order to
ease the coupling with a Finite Element Method zone (striped).

Fig. 2. A sample of a spherical discrete domain and an example of neighbour
discrete elements.

Fig. 3. 3D crystal domain and example of a random particle with six neighbours.
The volume represented by each discrete element is 2R � 2R � 2R = 8R3.

I. Terreros et al. / Computational Materials Science 69 (2013) 46–52 47



Download English Version:

https://daneshyari.com/en/article/1561395

Download Persian Version:

https://daneshyari.com/article/1561395

Daneshyari.com

https://daneshyari.com/en/article/1561395
https://daneshyari.com/article/1561395
https://daneshyari.com

