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a b s t r a c t

A numerical procedure based on the method of lines for time-dependent electrodiffusion transport has
been developed. Two types of boundary conditions (Neumann and Dirichlet) are considered. Finite differ-
ence space discretization with suitably selected weights based on a non-uniform grid is applied. Consis-
tency of this method and the method put forward by Brumleve and Buck are analysed and compared. The
resulting stiff system of ordinary differential equations is effectively solved using the RADAU5, RODAS
and SEULEX integrators. The applications to selected electrochemical systems: liquid junction, bi-ionic
case, ion selective electrodes and electrochemical impedance spectroscopy have been demonstrated. In
the paper we promote the use of the full form of the Nernst–Planck and Poisson (NPP) equations, that
is including explicitly the electric field as an unknown variable with no simplifications like electroneu-
trality or constant field assumptions. An effective method of the numerical solution of the NPP problem
for arbitrary number of ionic species and valence numbers either for a steady state or a transient state is
shown. The presented formulae – numerical solutions to the NPP problem – are ready to be implemented
by anyone. Moreover, we make the resulting software freely available to anybody interested in using it.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Mass and charge transport processes play an important role in
different areas of science. In electrochemistry they are extensively
used for the description of membrane potentials and concentration
profiles. Particular application of this description is the field of ion
selective electrodes (ISEs) and molten salts. In engineering prob-
lems the behaviour of porous materials is affected by the transport
of ions due to concentration gradients. These mechanisms of ionic
diffusion in porous media which appear, for example in the filtra-
tion by ion exchange membranes and the transport of pollutants in
soils, have received a great deal of attention from chemical and
geological engineers. The process of ionic diffusion remains of pri-
mary importance in many civil engineering problems since the
long-term durability of many building materials, such as concrete,
is directly effected by the transport of chemical species [1]. In
semiconductor field the transport of charged species was consid-
ered from the very beginnings of this discipline. Workers in this

field developed many powerful techniques but usually directed
to solve its specific problems (two species and steady-state). The
membrane processes involving charge transport are also of vital
importance in cell biology since they support homeostasis of living
organisms.

All these processes (ionic diffusion in porous media, electro-
chemical and biological membranes as well as electrons and holes
transport in semiconductors) can be described using Nernst–
Planck and Poisson (NPP) system of partial differential equations
with suitable initial and boundary conditions. Although, tools for
modelling individual applications are described in literature yet,
they are not easy to get. Some of them are commercial (e.g., COM-
SOL), some use commercial computation environments (e.g., Math-
ematica, Mathcad, MATLAB), and others require to buy the
commercial specialised numerical libraries (like DiffPack, NAG,
IMSL, etc.).

In this paper we will promote the use of full form of NPP equa-
tions, i.e., including explicitly the electric field as an unknown var-
iable. We will present an effective method of numerical solution of
NPP problem for arbitrary number of ionic species and valence
numbers, both for steady and transient states. A new discretization
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scheme is presented and its consistency is analysed. Two types of
boundary conditions are considered: (1) Neumann-like boundary
conditions for fluxes–known in electrochemistry as Chang–Jaffé
boundary conditions and (2) Dirichlet boundary condition for con-
centrations. Obtained formulae – expressions for numerical solu-
tion to NPP problem – can be used by anyone interested to
implement them on their own. Moreover we make the resulting
software available to anybody interested in using it.

The plan of this paper is as follows. We start from the short
introduction to NPP equations with Dirichlet and Neumann-like
boundary conditions. A method of lines using new space discreti-
zation scheme is described and used for obtaining numerical solu-
tion of initial-boundary value problem for the NPP system. This
method is tested for a binary electrolyte case, where an analytical
solution for transient state is available. The use of the software for
solving liquid junction and bi-ionic cases is also demonstrated.
Application to ion-selective electrodes are shown and compared
with experimental results. Generation of impedance spectra based
on the time dependent solution of NPP problem is also presented.

2. Mathematical model

The multi-layer NPP model describes a system consisting of a
layers, each corresponding to a different phase Fig. 1. This transient
model of electrodiffusion allows a description of the evolution of
ionic concentrations and electric potential profiles in time, and is
often used in modelling of transport in liquid and solid electrolytes,
melted salts, oxide scales, etc. In this model, diffusion and migra-
tion of ions are governed according to the Nernst–Planck (NP) flux
expression, while the Poisson (P) equation describes the electrical
interaction of the species. However, it is convenient to replace the
Poisson equation by the displacement current equation as
described by Cohen and Cooley [2]. All these equations form the
following system of evolutionary nonlinear partial differential
equations (PDEs) for r components and a layers:
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where the expression for the Nernst–Planck flux (constitutive rela-
tion) is
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In the above equations cj
i – the molar concentration of i-th com-

ponent in j-th layer, Ej – the electric field in j-th layer, IðtÞ – the
electrical current density, ej – dielectric constant of j-th layer,
kj�1; kj – the boundaries of j-th layer, zi – the valence number of

i-th component, tEND – duration of the process, and F;R; T have their
usual meanings (the Faraday constant, gas constant and absolute
temperature).

For completeness, the above system of PDE must be accompa-
nied by boundary and initial conditions. The initial conditions
consist of given concentration profiles and electric field:
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E0ðxÞ is assumed to be zero for all x except in the case of imped-
ance spectra simulations. In simulations we used electroneutral
initial profiles, although it is not necessary.

The boundary conditions may be of various types. In this paper
we use two types of boundary conditions. The first are the
Neumann-like boundary conditions for fluxes [3], known in elec-
trochemistry as Chang–Jaffé boundary conditions. The first order
heterogeneous rate constants~kj

i; k
 

j
i are used to describe the kinetics

at the interface x ¼ kj between the layers j and jþ 1:
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The above equation is a special case of Butler–Volmer equation,
when the overpotential equals zero [4].

The second possibility (basically for single-layer problems,
a ¼ 1) is the standard Dirichlet boundary conditions for
concentrations
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where ci;L; ci;R are the left and right bulk concentrations [5,6]. The
use of both types of boundary conditions will be presented for li-
quid junction case.

Scaling and dimensionless variables The presented problem
contains many physical parameters. By introducing dimensionless
variables, the number of these parameters can be reduced. More-
over, by finding the proper scaling factors it is possible to identify
the relative contribution of the various terms in the equations. This
may be used to obtain better accuracy in numerical procedures.
Thus, the Eqs. (1)–(5) may now be converted into a dimensionless
form [7] through the following transformations:
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of distance, time, concentration and electric field respectively;
xs; ts; cs; Es are their characteristic values (scaling factors). Dimen-
sionless parameters take the form: Dj
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From this point on, we use the rescaled variables in all equa-

tions and the overbars are dropped to ease the burden of notation.

Fig. 1. Schematic representation of the system for NPP model of electrodiffusion.
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