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a b s t r a c t

This work introduces the Least Dot Products (LDP) method, a new algorithm for phase stability analysis

of thermodynamic mixtures. Starting with the fact that tangent plane distance function (the objective

function used in global stability tests) is, essentially, the dot product between the vector of

compositions of a trial phase and the vector that describes the differences among the chemical

potential of the components in the phases, our approach tries to obtain the least values of an auxiliary

function that represents an appropriate dot product on a unitary sphere of the n-dimensional space,

which is a good approximation for the stability test function. In agreement with the foundations of the

Gibbs plane tangent criterion, the new algorithm simply tries to find points where the objective

function is negative, which are not (necessarily) stationary points or global minima. Thus, our main

contribution is not a new method for general nonlinear problems, or a rule-based termination criteria

for a classical optimization method. Consequently, if such points do not exist, then LDP method is not

capable to recognize the stability condition. To overcome this problem, we develop also a powerful

safeguard algorithm, denominated Projected Simulated Annealing (PJSA) algorithm, which is obtained

by projecting the Simulated Annealing algorithm onto the unitary sphere.

In the present article, firstly we consider liquid–liquid equilibria at low or moderate pressures,

where the excess Gibbs energy is described by NRTL or UNIQUAC models. Secondly, we address vapor–

liquid equilibria at high pressures with cubic equations of state.

To illustrate the performance of the new methodology, we use here 20 systems studied by other

authors. Such problems possess 2–12 variables and constitute severe tests for many optimization

methods. For some mixtures, we show that LDP method is capable of determining the instability

condition using just two iterations.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The stability analysis is an important step in the phase
equilibrium study. In fact, such analysis is present in various
chemical engineering processes where the prediction of number
of phases and composition calculations take place.

As demonstrated by Baker et al. (1982), at constant tempera-
ture T and pressure P, the phase stability analysis of an
n-component thermodynamic mixture uses the called tangent
plane distance (TPD) function, given by

TPDðxÞ ¼
Xn

i ¼ 1

xi½m
ðbÞ
i ðxÞ�m

ðaÞ
i ðzÞ�, ð1Þ

where z¼(z1, y, zn) is the vector of compositions (mole fractions) of
the phase under consideration (denoted by a) and x¼(x1, y, xn) is
the vector of compositions of a trial phase (denoted by b). In Eq. (1),
mðjÞi is the chemical potential of component ið ¼ 1,. . .,nÞ in the phase
j¼a, b.

This thermodynamic analysis constitutes a criterion for global
stability, called Gibbs plane tangent (GPT) criterion, which can be
stated as follows.

GPT Criterion. Let S be the subset of Rn given by

S ¼ x¼ ðx1,. . .,xnÞARn; 0oxio1 and
Xn

i ¼ 1

xi ¼ 1

( )
: ð2Þ

If TPD(x)Z0, for all xAS, then the mixture is stable, and
exhibits a single phase; otherwise, i.e., if there exists some xnAS
such that TPD(xn)o0, then the mixture is unstable, and a new
phase will appear.

Michelsen (1982a) was the first to formulate numerical meth-
odologies for the global stability analysis based on GPT criterion.
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This author used two different methods. In one of the implemen-
tations, Michelsen proposes a direct substitution scheme based on
the following paradigm: the numerical method seeks to deter-
mine stationary points of TPD(x). The other approach taken by
Michelsen uses a different paradigm: the numerical method seeks
to determine minimum points of TPD(x). In both cases, the signs
of TPD(x) on the found points determine the outcome of the
stability test.

Today, nearly 30 years after the seminal article by Baker et al.
(1982), we can observe a tremendous growth of publications in
the area of phase equilibrium with emphasis on the global
stability analysis, using the GPT criterion. Among several works,
we can mention Michelsen (1982a, b, 1984a), Nghiem and Li
(1984), Nghiem et al. (1985), Trangenstein (1987), Nagarajan et al.
(1991a, b), Sun and Seider (1995), Hua et al. (1996, 1998a, b),
McDonald and Floudas (1995a, b, 1997), Wasylkiewicz et al.
(1996), Wasylkiewicz and Ung (2000), Pan and Firoozabadi
(1998), Zhu and Xu (1999a, b), Zhu et al. (2000), Zhu and Inoue
(2001), Harding and Floudas (2004), Jalali and Seader (2000),
Lucia et al. (2000, 2005), Tessier et al. (2000), Henderson et al.
(2001, 2004, 2010), Gomes et al. (2001), Rangaiah (2001), Nichita
et al. (2002, 2006), Nichita and Gomez (2010), Xu et al. (2002,
2005), Balogh et al. (2003), Gecegormez and Demirel (2005),
Bonilla-Petriciolet et al. (2006), Bonilla-Petriciolet and Segovia-
Hernández (2010), Hoteit and Firoozabadi (2006), Schmitz et al.
(2006), Srinivas and Rangaiah (2007), Nagatani et al. (2008), Saber
and Shaw (2008) and Rahman et al. (2009), for example.

The works mentioned above show also that the development
of the numerical analysis related with the phase stability is
intimately linked to the exponential growth that has been
occurring in global optimization, both deterministic and stochas-
tic. Such fact is an obvious consequence of the mathematical
structure of the test stability problem and of the paradigms
initially proposed by Michelsen: the (here) called Paradigm 1 that
approaches the stationary points of TPD(x), and the (here) called
Paradigm 2 that approaches the minimum points of TPD(x). Such
paradigms are, in general, the keys in almost all algorithms used
for phase stability analysis.

Thus, following Paradigm 1, methods are used to solve the
nonlinear system:

Grad TPDðxÞ ¼ 0,

xAS,

(
ð3Þ

where Grad TPD(x)¼0 represents an appropriate stationary con-
dition for TPD(x) on S.

On the other hand, following Paradigm 2, methods are used to
solve the optimization problem:

Min TPDðxÞ,

xAS:

(
ð4Þ

In the present work, we develop a method for the stability test
which simply tries to find a point x such that TPD(x)o0, since
such a point exists in S. In this case, x is not, necessarily, a
minimum or a stationary point of TPD(x). Here, this more general
approach will be called Paradigm 3. Thus, using Paradigm 3, we
seek to solve the following problem:

Find xAS such that

TPDðxÞo0:

(
ð5Þ

It is worth emphasizing that our approach is not a rule-based
termination criteria for a classical optimization method, which
simply tries to stop an iterative process, when TPD(x)o0. In fact,

the main result of this work is a method especially developed to
solve the problem shown in Eq. (5).

Our methodology is developed using an auxiliary function
hðxÞ ¼ ð1=nÞ

ffiffiffi
x
p

Uw, which essentially defines the dot product
between two vectors of Rn, the vector

ffiffiffi
x
p
¼ ð

ffiffiffiffiffi
x1
p

,. . .,
ffiffiffiffiffi
xn
p
Þ and a

specific (non-zero) vector denoted here by w that is associated to
the thermodynamic model. As shown later in this work, since
there exists a mapping f : S-S, which maps S onto the unitary
sphere S�Rn, then a Lagrangian condition can be used to
generate a sequence of points related to least dot products among
w and points on the unitary sphere of Rn. This procedure gives
name to the numerical scheme called the Least Dot Products
(LDP) method. The form of h(x) was adopted for being easy to
handle. Besides, as we show, this auxiliary function has aspects
that make it a good approximation for the tangent plane distance
function.

In spite of the use of a Lagrangian condition, the LDP method is
not an optimization method for the problem described in Eq. (4).
Consequently, if there are no points in S such that TPD(x)o0,
then the LDP method is not capable to determine the stability
condition. To overcome this problem, following Paradigm 2, we
use a safeguard algorithm, which is called to detect stability states
or when the LDP method fails to determine xAS, such that
TPD(x)o0, at a given iteration number, for example, 100
iterations.

In the present work, we develop a powerful safeguard algo-
rithm denominated Projected Simulated Annealing (PJSA) algo-
rithm. This stochastic algorithm is obtained by projecting the
Simulated Annealing algorithm (as described by Corana et al.,
1987) onto the unitary sphere S.

Here, we consider liquid–liquid equilibria, where the excess
Gibbs energy is described by the Non-Random Two Liquid (NRTL)
or UNIversal QUAsi-Chemical (UNIQUAC) models, see Prausnitz
et al. (1986), and vapor–liquid equilibria modeled with cubic
equations of state. More precisely, we use the cubic equations
developed by Soave (1972) and Peng and Robinson (1976).

To illustrate the performance of the LDP method, we attack
benchmark problems studied by other authors, among them we
can cite Michelsen (1982b), Nagarajan et al. (1991a), McDonald
and Floudas (1995b), Tessier et al. (2000), Gecegormez and
Demirel (2005), Bonilla-Petriciolet et al. (2006), and Saber and
Shaw (2008). Such test problems have 2–12 variables, presenting
several stationary points. In many cases, we show that our new
methodology is capable of obtaining xAS, such that TPD(x)o0, in
just two iterations.

2. The thermodynamic models

We consider the tangent plane distance function in dimen-
sionless form:

DðxÞ ¼
TPDðxÞ

RT
, ð6Þ

where R is the universal gas constant.

2.1. NRTL and UNIQUAC

At low or moderate pressures, the function D(x) can be written
in terms of activity coefficients as

DðxÞ ¼
Xn

i ¼ 1

xi½lnðxig
ðbÞ
i ðxÞÞ�lnðzigðaÞi ðzÞÞ�, ð7Þ

where gðjÞi is the activity coefficient of component ið ¼ 1,. . .,nÞ in
the phase j¼a, b.
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