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a b s t r a c t

Low computational efficiency and instability remain the greatest obstacle for crystal plasticity model
applied to industrial practice. Herein, an explicit algorithm was deduced by introducing Taylor series
expansion to recast the high-order nonlinear equation (for shear strain rate of slip systems) of rate depen-
dent crystal plasticity into a set of linear equations. By virtue of a new approach to perform constitutive
update in the crystallographic system, the linear model was so built with unknowns of the increments of
stress and deformation resistance of slip systems. It was then solved directly by the complete pivot
Gaussian elimination method within a two-level solving procedure. Full-strain-constraints (FC) Taylor
model and crystal plasticity finite element method (CPFEM) model were utilized to verify the reliability,
efficiency and stability of the presented algorithm. Then, texture evolution in two typical forming pro-
cesses, in-plane shear and ideal plane-strain compression, was analyzed through pole figures and orien-
tation distribution functions (ODF). The results achieved indicated that the presented algorithm was of
high efficiency, especially in parallel operation with multiple CPUs, together with acceptable accuracy
in the prediction of stress–strain response and texture evolution.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Elastic–plastic anisotropy and texture evolution are the typical
characters in metal forming, which are the primary objectives for
constitutive modeling trying to capture. Comparing with the
empirical models accounting for anisotropic yield in industrial
practice, the prevalence of the crystal plasticity finite element
method (CPFEM) in basic research is due to its physical basis and
the incorporation of texture changes. However, the major draw-
back of the crystal plasticity approaches is the long calculation
time [1]. To overcome this drawback, most improvements have
been done in two aspects. One is to develop efficient numerical
algorithm for constitutive calculation of single crystal, and the
other is to modify polycrystal framework. Additionally, modifica-
tions on polycrystal framework are usually not only for computa-
tional efficiency issue but also for prediction precision of texture
evolution.

In the developments of numerical algorithm, implicit iterations
and explicit algorithms are two salient approaches. In rate inde-
pendent crystal plasticity (RICP) modeling, implicit iterations are
utilized to identify active slip systems [2] and to determine their
shearing rates [3]. While, implicit algorithms were applied to solve
the high-order nonlinear equation to determine shearing rates of

slip systems in rate dependent crystal plasticity (RDCP). Among
them, Newton–Raphson iteration method was the most popular
procedure adopted by scholars [4–6]. Of course, several modified
methods on Newton-type iteration can also be found in [7–9].
Although these algorithms were proved with good stability, they
involved iterations both at the local level to update the stress
and globally to enforce equilibrium, requiring thus much computa-
tional effort [7]. So, it is too expensive to apply crystal plasticity in
industrial practice. Therefore, explicit algorithms without itera-
tions are expected as an effective way to speed up the calculation
of crystal plasticity model. Rate-tangent method [10] and Euler for-
ward method [11] are the typical representatives of the explicit
algorithms. They increased the computational efficiency of crystal
plasticity model remarkably (more than 50 times than implicit
algorithms [12]). However, they were proved very rigid needing
very small step length (rate-tangent method and Euler forward
method) and not self-starting (rate-tangent method) [13].

On the other hand, polycrystal framework has been modified for
texture prediction as well as computational efficiency. Two simple
mechanical homogenization models were proposed by Sachs [14]
and Taylor [15]. The Sachs model represents a lower-bound result
for the stress of a mechanically loaded polycrystalline sample since
it is a no-strain-constraints (NC) model only accounting for stress
equilibrium. While, the Taylor model is a full-strain-constraints
(FC) approach in which the external strains are equally valid for
each single grain. Since the Taylor model neglects stress equilib-
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rium, it represents an upper-bound result for the strains of poly-
crystals [16]. Since the FC Taylor model was found too strict, con-
ceptual modifications of the constitutive descriptions consist
essentially in the introduction of grain-interactions in strain relax-
ation schemes, i.e. the so called relaxed-constraints (RC) Taylor
models [16,5,17,18]. Except for the CPFEM model which automat-
ically takes grain interactions into account, early modifications of
the FC Taylor model were introduced by incorporating partly strain
relaxations (e13,e23) between neighboring grains. Then, the LAMEL
model proposed by Van Houtte et al. [17] tried to capture some
specific effects due to the interaction of neighboring grains (full
strain relaxations) through looking at two grains simultaneously.
Further, Van Houtte et al. [18] presented an advanced LAMEL (ALA-
MEL) model to overcome the theoretical shortcomings of the mul-
ti-grain models (including LAMEL), such as the misfit of freedom
degrees between individual grain and the aggregate, the assump-
tion of two different types of boundaries existing, and the assump-
tion of uniformly distributed stress and strain inside each grain.
Although the texture prediction obtained by RC models principally
yields better results than those of the NC or FC approaches, devia-
tions have been observed particularly in the large strain regime
since the choice of relaxations in a RC model seems somewhat arti-
ficial. Also, additional calculation was added to the FC Taylor mod-
el. Besides, an excellent work to reduce calculation amount of the
FC Taylor model is the texture component method proposed by
Raabe and co-workers [19–21]. It enlarges the application of
crystal plasticity model into industrial practice [1].

Beyond above discussion, the motivation of the present paper is
to improve the computational efficiency of single crystal plasticity
itself, so that simple or advanced polycrystal plasticity models may
benefit from it. So, the contents in the present paper are to develop
a new linear explicit algorithm of rate dependent crystal plasticity,
and issues concerning computational efficiency and precision, i.e.
constitutive update system and parallel operation, will also be dis-
cussed by investigating the effects of system for the update of
stress and grain orientation. Then, the algorithm presented will
be verified on its efficiency and precision in stress–strain responses
and texture prediction, by adopting the FC Taylor model and the
CPFEM model, which will be quantified by pole figures and orien-
tation distribution functions (ODF).

2. Taylor-type polycrystal constitutive framework

The Taylor-type polycrystalline constitutive framework pro-
posed by Taylor [15] is adopted here. The local deformation gradi-
ent in each grain is homogeneous and identical to the macroscopic
deformation gradient F at the continuum material point level. The
macroscopic stress response at each integral point is assumed as
the volume-average of the multitude of microscopic single crystal-
line grains [4]. Then, with T(k) denoting the Cauchy stress in the
kth crystal, these assumptions lead to

T ¼
XN

k¼1

hwkTðkÞi; ð1Þ

where T is the volume-averaged stress, N is the total number of
grains, and wk is the volume fraction of each single grain.

The elastic constitutive relation for the stress in each grain is ta-
ken as

T� ¼ R : E�; ð2Þ

where

E� � ð1=2ÞðF�TF� � IÞ ð3Þ

is an elastic strain measure, R is a fourth-order elasticity tensor, I is
the second-order identity tensor, and

T� � F��1fðdet F�ÞTgF��T ð4Þ

is the stress measure which is the elastic work conjugate to the
strain measure E⁄. F⁄, the non-plastic deformation gradient, can
be calculated from the multiplicative decomposition of deformation
gradient as

F� ¼ FFp�1; ð5Þ

where the plastic deformation gradient Fp is in turn given by the
evolution rule

_Fp ¼ LpFp; ð6Þ

with the plastic part of velocity gradient

Lp ¼
X

a

_caSa
0; Sa

0 �ma
0 � na

0: ð7Þ

The velocity gradient L and its symmetric and antisymmetric
parts D and W are

L ¼ _FFp; D ¼ 1=2ðL þ LTÞ; W ¼ 1=2ðL � LTÞ; ð8Þ

and

W ¼W� þWp; ð9Þ

Wp ¼
X

a
wa _ca; ð10Þ

wa ¼ 1
2
½ma

0 � na
0 � na

0 �ma
0� ð11Þ

Here, Wp is the so-called plastic spin and W⁄ is the spin, ma
0 and

na
0 are time-independent orthonormal unit vectors which define

the slip direction and slip plane normal of the slip system a in a
fixed reference configuration, and Sa

0 is the Schmid tensor. For
face-centered cubic (FCC) metal, there are 12 {111}<110 > type slip
systems as listed in Table 1. Fp in Eq. (6) should be normalized nec-
essarily by dividing the computed values of each of its components
by the cube root of the computed determinant to ensure det Fp = 1
by virtue of plastic incompressibility. The plastic shearing rate on
the slip system a can be given by an exponential type law in terms
of resolved shear stress (RSS) sa and deformation resistance sa of
the a slip system, as

_ca ¼ _c0
sa

sa

����
����
1=m

signðsaÞ; ð12Þ

where _c0 is a reference value, m is the strain rate sensitive coeffi-
cient of material, and the symbol sign stands for getting the sign
symbol of sa.In Eq. (12), RSS may be approximated by

sa ¼: T� : Sa
0; ð13Þ

and sa evolves as

_sa ¼
X

b

habj _cbj; ð14Þ

where hab is the rate of strain hardening on slip system a due to a
shearing on the slip system b, and is related to a single slip harden-
ing rate, h(b), and the hardening matrix, qab, as

Table 1
Slip systems in FCC crystal.

a ma
0 na

0 a ma
0 na

0

#1 (1�10) (111) #7 (10�1) (1�11)
#2 (10�1) (111) #8 (011) (1�11)
#3 (01�1) (111) #9 (110) (1�11)
#4 (101) (�111) #10 (1�10) (11�1)
#5 (110) (�111) #11 (101) (11�1)
#6 (01�1) (�111) #12 (011) (11�1)
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