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a b s t r a c t

The paper presents an incremental damage model for determining the overall mechanical behaviors of
particulate-reinforced micropolar composites. The particle size effect and progressive-debonding damage
are fully accounted for within the present framework, which makes use of the micropolar Eshelby’s ten-
sor for characterizing the size-dependent constraint of the matrix microstructure on the particles, a crit-
ical stress criterion for the interfacial debonding, and Qiu-Weng’s energy approach, together with Hu’s
variation method for the equivalent stress of the matrix. Finally, the present model was applied for the
predictions of the overall stress–strain relations of the composites that reinforced by either particles or
voids, and are subjected to the uniaxial tension. It is shown that all the predictions are in good agreement
with the experiments and finite element computations.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Particle size is being widely regarded as an important factor sig-
nificantly influencing the effective properties of the composites.
The particle size is smaller, yield and flow stresses are more en-
hanced, while fracture toughness and ductility are often more re-
duced [1–3]. In addition, particle size also greatly affects the
evolution of debonding damage during the deformation. On the
development of high-performance composites containing nano-
particles, it is important to make clear the particle size effect and
the damage progress in particle-reinforced composites. This contri-
bution is to develop an analytical model taking account of the par-
ticle size effect as well as the damage evolution.

Generally, two schemes were adopted to study the influence of
progressive damage on the stress–strain relation of the composites.
One was finite element method (FEM) analysis based on a unit cell
[4–10], and the other was the micromechanics-based method.
Tohgo et al. [11,12] proposed an incremental damage model of
particle-reinforced composites taking account of plasticity of the
matrix and progressive debonding damage of particles based on
the Eshelby’s equivalent inclusion method [13] and Mori–Tanaka’s
mean field concept [14]. Ju and Lee [15] and Sun et al. [16] re-
garded the partially-debonded particles in the composites as
fictitious orthotropic inclusions without debonding according to
Zhao and Weng [17], and proposed a progressive debonding
damage model of particle-reinforced composites based on the

ensemble-volume averaging procedure. FEM analyses based on a
unit cell are seriously influenced by the periodical boundary condi-
tions imposed on the representative volume element (RVE). There-
fore, micromechanics-based methods are more physically
reasonable and much more accurate as compared to those FEM
simulations based on a unit cell.

Until now, many studies have been performed on the particle
size effect. Niordson and Tvergaard [18] and Xue et al. [19] carried
out a unit-cell based FEM analysis for discontinuously reinforced
composites by using strain gradient plasticity [20], and discussed
the size effects of reinforcements on the overall deformation
behaviors of the composites. Nan and Clarke [21] extended the
effective medium approach by introducing the particle size effect
into the stress–strain relation of in situ matrix in the composites
and damage criterion of particles. Liu and Sun [22] and Jiang
et al. [23,24] developed analytical models of particle-reinforced
composites by introducing an interphase between particles and
matrix and discussed the particle size effect on the deformation
due to an interphase. Tohgo et al. [25] incorporated the effect of
dislocation density into the in situ yield stress of the matrix and
then studied the damage behaviors of metal matrix composite
(MMC) on the basis of incremental damage theory. Based on the
micropolar Eshelby’s solutions for spherical and cylindrical inclu-
sions by Cheng and He [26], Sharma and Dasgupta [27] extended
the Mori–Tanaka’s method to estimate the effective elastic behav-
iors of the micropolar composites.

To predict the non-linear behaviors of micropolar composites,
Liu and Hu [28] and Xun et al. [29] presented analytical microme-
chanical methods by making use of the classical secant moduli
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scheme with second-order stress moment [30]. Although the elas-
to-plastic behaviors of particle-reinforced composites have been
well studied in many published works, the progressive debonding
damage was not carefully considered yet. Based on the micropolar
elasticity theory, the main objective of the paper is supposed to
propose the exact formulas of incremental damage theory to ana-
lyze not only the particle size effect but also the debonding
damage.

In this paper, the incremental damage model by Tohgo et al.
[11,12] is reformulated on the basis of micropolar elasticity theory.
Numerical studies of the stress–strain relations under uniaxial ten-
sion are performed for the composites with a certain size distribu-
tion of particles. Subsequently, the effects of debonding damage,
particle size and particle volume fraction on the stress–strain re-
sponse of the composites are discussed.

2. Micropolar elasticity theory

Since the constituents of the composites are assumed micropo-
lar materials, the micropolar elasticity theory is briefly explained.
In absence of body forces and body moment, the governing
equations for determining elastic stress and couple stress of a
Centro-symmetric and isotropic micropolar material are given by

eij ¼ uj;i � ekij/k; kij ¼ /j;i ð1aÞ

rij;i ¼ 0; mij;i þ ejikrik ¼ 0 ð1bÞ

rij ¼ dijkekk þ ðlþ jÞeij þ ðl� jÞeji ð1cÞ

mij ¼ dijakkk þ ðbþ cÞkij þ ðb� cÞkji ð1dÞ

where rij and mij denote the non-symmetric stress and couple
stress tensors, eij and kij non-symmetric strain and torsion tensors,
ui and ui displacement and micro-rotation vectors, respectively, eijk

permutation tensor and dij kronecker delta. k and l are the classical
Lame’s constants and j, c, b, a the new elastic constants in micro-
polar theory. k, l and j have dimensions of [N/m2], and c, b and
a have dimensions of [N]. The boundary conditions applied on the
boundary @X of volume X are given as,

rijnj ¼ ti; mijnj ¼ pi on @X ð2aÞ

ui ¼ �ui; /i ¼ �/i on @X ð2bÞ

where �ui, �/i, ti and pi are the uniform displacement, micro-rotation,
constant surface force and couple stress separately, and nj the outer
normal unit tensor on @X.

Three intrinsic characteristic lengths of l1, l2 and l3 are intro-
duced to account for the dimensional difference between the two
sets of moduli, and are defined by,

l1 ¼
ffiffiffiffiffiffiffiffiffi
c=l

p
; l2 ¼

ffiffiffiffiffiffiffiffiffi
b=l

p
; l3 ¼

ffiffiffiffiffiffiffiffiffi
a=l

p
ð3Þ

For the sake of simplicity, three characteristic lengths are as-
sumed to be equal (l1 = l2 = l3 = l). The constitutive equations are
written in the compact form when we denote r0(ij), rhiji, rkk and
e0(ij), ehiji, ekk as the deviatoric symmetric, anti-symmetric and
hydrostatic parts of the stress and strain tensors, respectively (sim-
ilar notations for the couple-stress and torsion tensors):

r0ðijÞ ¼ 2le0ðijÞ; rhiji ¼ 2jehiji; rkk ¼ 3Kekk ð4aÞ

m0ðijÞ ¼ 2bk0ðijÞ; mhiji ¼ 2ckhiji; mkk ¼ 3Nkkk ð4bÞ

with

K ¼ kþ 2
3
l; N ¼ aþ 2

3
b ð5Þ

where subscripts (�) and h�i denote the symmetric and anti-symmet-
ric parts of the tensor, respectively.

Similar to the classical Cauchy material, a J2-type effective
equivalent stress is established for the micropolar material by,

r2
eq ¼

3
2

r0ðijÞr
0
ðijÞ þ l2 m0ðijÞm

0
ðijÞ þmhijimhiji

� �h i
ð6Þ

3. Eshelby’s tensors and Mori–Tanaka’s method for a spherical
inclusion

According to Cheng and He’s conclusions [26], the perturbed
strain ept

ij ðxÞ and torsion kpt
ij ðxÞ at the material point x due to an

inhomogeneity are expressed in terms of the Eigenstrain e�ijðxÞ
and Eigentorsion k�ijðxÞ as,

ept
ij ðxÞ¼SijklðxÞe�klðxÞ þ CijklðxÞk�klðxÞ ð7aÞ

kpt
ij ðxÞ¼ŜijklðxÞe�klðxÞ þ bC ijklðxÞk�klðxÞ ð7bÞ

where Sijkl, Cijkl, bSijkl and bCijkl are the micropolar Eshelby’s tensors.
The most attractive conclusion in the classical Eshelby’s theory is
that the strain (and so the stress) is uniform inside an inclusion,
but which does not hold for the micropolar medium any more.
For the sake of simplicity and convenience in the application, Shar-
ma recommend adopting the average values of micropolar Eshelby’s
tensors over the inclusion instead of the original forms [27]. Subse-
quently, such the strategy was widely used later and confirmed by
Liu and Hu [28], Sarvestani [31] and Berveiller [32], etc.

Liu and Hu [28] computed the volume-averaged values of
micropolar Eshelby’s tensors over an inclusion and confirmed that
hCijkli ¼ hbSijkli ¼ 0, and the specific formulas of hSijkli and hbCijkli are
expressed as,

hSijkli ¼ T1dijdkl þ ðT2 þ T3Þdikdjl þ ðT2 � T3Þdildjk ð8aÞ

hbCijkli ¼ Q 1dijdkl þ ðQ 2 þ Q 3Þdikdjl þ ðQ 2 � Q 3Þdildjk ð8bÞ

where

T1 ¼
3k� 2l

15ðkþ 2lÞ þ
4gðdþ gÞj

5d3ðjþ 2lÞ
CðgÞ

T2 ¼
3kþ 8l

15ðkþ 2lÞ �
6gðdþ gÞj

5d3ðjþ 2lÞ
CðgÞ

T3 ¼
4jþ 3l

6l
� 2gðdþ gÞðjþ lÞ2

d3lðjþ 2lÞ
CðgÞ � hðdþ hÞ

2d3 CðhÞ

Q1 ¼ �ðcþ bÞ ð2lþ jÞðg þ dÞ
20ljgd3 CðgÞ þ ð5aþ cþ bÞ ðhþ dÞ

10jhd3 CðhÞ

Q2 ¼
3ðbþ cÞð2lþ jÞðg þ dÞ

40ljgd3 CðgÞ þ ðcþ bÞ ðhþ dÞ
10jhd3 CðhÞ

Q3 ¼
ðc� bÞð2lþ jÞðg þ dÞ

8ljgd3 CðgÞ

CðyÞ ¼ e�d=y½d coshðd=yÞ � y sinhðd=yÞ�

h2 ¼ aþ bþ c
2j

; g2 ¼ ð2lþ jÞc
4lj

where dij is the Kronecker-delta function, d the particle diameter,
and h and g have dimensions of [m]. Cijkl and Dijkl denote the elastic-
ity tensors of the micropolar medium, and are given by,
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