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a b s t r a c t

The paper presents a homogenization method and some averaging methods to predict the elastic prop-
erties of multiphase pre-impregnated composite materials like Sheet Molding Compounds (SMCs). The
upper and lower limits of the homogenized coefficients for a 27% fibers volume fraction SMC have been
computed. A comparison between the upper and lower limits of the homogenized elastic coefficients for
a 27% fibers volume fraction SMC and the experimental data is presented. The estimation model used as a
homogenization method of these heterogeneous composite materials, gave emphasis to a good agree-
ment between this theoretical approach and experimental data.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

The objectives of the paper is to compute the upper and lower
limits of the homogenized elastic coefficients for a common 27% fi-
bers volume fraction SMC based on a homogenization method de-
scribed by Ene and Pasa [1] as well as some averaging methods of
the Young and shear moduli of various SMCs with different fibers
volume fractions.

The most obvious mechanical model which features a multi-
phase composite material is a pre-impregnated material, known
as prepreg. In the wide range of prepregs the most common used
are Sheet and Bulk Molding Compounds. A Sheet Molding Com-
pound (SMC) is a pre-impregnated material, chemically thickened,
manufactured as a continuous mat of chopped glass fibers, resin
(known as matrix), filler and additives, from which blanks can be
cut and placed into a press for hot press molding. The result of this
combination of chemical compounds is a heterogeneous, aniso-
tropic composite material, reinforced with discontinuous fibers
[2,3].

A typical SMC material is composed of the following chemical
compounds: calcium carbonate, chopped glass fibers roving, unsat-
urated polyester resin, low-shrink additive, styrene, different addi-
tives, pigmented paste, release agent, magnesium oxide paste,

organic peroxide and inhibitors in various volume fractions. The
matrix system plays a significant role within a SMC, acting as com-
pounds binder and being ‘‘embedded material” for the reinforce-
ment. To decrease the shrinkage during the cure of a SMC
prepreg, filler have to be added in order to improve the flow capa-
bilities and the uniform fibers transport in the mold. For materials
that contain many compounds, an authentic, general method of
dimensioning is difficult to find.

In a succession of hypotheses, some authors tried to describe
the elastic properties of SMCs based on ply models and on material
compounds [4-6]. The glass fibers represent the basic element of
SMC prepreg reinforcement. The quantity and roving orientation
determine, in a decisive manner, the subsequent profile of the
SMC structure’s properties. The following information is essential
for the development of any model to describe the composite mate-
rials behavior: the thermo-elastic properties of every single com-
pound and the volume fraction concentration of each compound
[7]. Theoretical researches regarding the behavior of heteroge-
neous materials lead to the elaboration of some homogenization
methods that try to replace a heterogeneous media with a homo-
geneous one [8-12]. The aim is to obtain a computing model, which
takes into account the microstructure or the local heterogeneity of
a material.

2. A homogenization method

We consider a domain X from R3 space, in xi coordinates, do-
main considered a SMC composite material, in which a so-called
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replacement matrix (resin and filler) represents the field Y1 and the
reinforcement occupies the field Y2 seen as a bundle of glass fibers.

Let us consider the following equation [1]:

f ðxÞ ¼ � @

@xi
aijðxÞ �

@u
@xj

� �
; aij ¼ aji ð1Þ

alternatively, written under the equivalent form:

f ¼ � @pi

@xi
; pi ¼ aij �

@u
@xj

: ð2Þ

In the case of SMC materials that present a periodic structure
containing inclusions, aij(x) is a function of x. If the period’s dimen-
sions are small in comparison with the dimensions of the whole
domain then the solution u of the Eq. (1) can be equal with the
solution suitable for a homogenized material, where the coeffi-
cients aij are constants. In the R3 space of yi coordinates, a parallel-
epiped with y0

i sides is considered, as well as parallelepipeds
obtained by translation niy0

i (ni integer) in axes directions. The
functions [1]:

ag
ijðxÞ ¼ aij

x
g

� �
; ð3Þ

can be defined, where g is a real, positive parameter. Notice that the
functions aij(x) are gY-periodical in variable x (gY being the parallel-
epiped with gy0

i sides). If the function f(x) is in X defined, the prob-
lem at limit is [1]:

f ðxÞ ¼ � @

@xi
ag

ijðxÞ �
@ug

@xj

� �
; ugj@X ¼ 0: ð4Þ

Similar with Eq. (2), the vector ~pg defines the following ele-
ments [1]:

pg
i ðxÞ ¼ ag

ijðxÞ �
@ug

@xj
: ð5Þ

For the function ug(x), an asymptotic development will be look-
ing for, under the form [1]:

ugðxÞ ¼ u0ðx; yÞ þ g1u1ðx; yÞ þ g2u2ðx; yÞ þ � � � ; y ¼ x
g
; ð6Þ

where ui(x, y) are elements, Y-periodical in y variable. The deriva-
tives of the functions ui(x, y) behave in the following manner [1]:

d
dxi
! @

@xi
þ 1

g
� @
@yi

: ð7Þ

If the values of ui x; x
g

� �
are compared in two homologous points

P1 and P2, homologous through periodicity in neighbour periods, it
can be notice that the dependence in x

g is the same and the depen-
dence in x is almost the same since the distance P1P2 is small. Let us
consider P3 a point homologous to P1 through periodicity, situated
far from P1. The dependence of ui in y is the same but the depen-
dence in x is very different since P1 and P3 are far away. For in-
stance, in the case of two points P1 and P4 situated in the same
period, the dependence in x is almost the same since P1 and P4

are very close, but the dependence in y is very different since P1

and P4 are not homologous through periodicity. The function ug de-
pends on the periodic coefficients aij, on the function f(x) and on
the boundary @X. The development (6) is valid at the inner of
the boundary @X, where the periodic phenomena are prevalent.
Using the development (6), the expressions @ug

@xi
and pg are [1]:

@ug

@xi
¼ @

@xi
þ 1

g
� @
@yi

� �
� ðu0 þ g � u1 þ � � �Þ

¼ @u0

@xi
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@yi
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þ @u2
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� �
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pg
i ðxÞ ¼ p0

i ðx; yÞ þ g � p1
i ðx; yÞ þ g � p2

i ðx; yÞ þ � � � ; ð9Þ

where:

p0
i ðx; yÞ ¼ aijðyÞ �

@u0

@xj
þ @u1

@yj

 !
; p1

i ðx; yÞ ¼ aijðyÞ �
@u1

@xj
þ @u2

@yj

 !
; . . .

ð10Þ

represent the homogenized coefficients.

3. Application for a 27% fibers volume fraction Sheet Molding
Compound

In the case of a SMC composite material which behaves macro-
scopically as a homogeneous elastic environment, is important the
knowledge of the elastic coefficients. Unfortunately, a precise cal-
culus of the homogenized coefficients can be achieved only in
two cases: the one-dimensional case and the case in which the ma-
trix- and inclusion coefficients are functions of only one variable.
For a SMC material is preferable to estimate these homogenized
coefficients between an upper and a lower limit.

Since the fibers volume fraction of common SMCs is 27%, to
lighten the calculus, an ellipsoidal inclusion of area 0.27 situated
in a square of side 1 is considered. The plane problem will be con-
sidered and the homogenized coefficients will be 1 in matrix and
10 in the ellipsoidal inclusion. In Fig. 1 the structure’s periodicity
cell of a SMC composite material is presented, where the fibers
bundle is seen as an ellipsoidal inclusion.

Let us consider the function f(x1, x2) = 10 in inclusion and 1 in
matrix. To determine the upper and the lower limit of the homog-
enized coefficients, first the arithmetic mean as a function of x2-
axis followed by the harmonic mean as a function of x1-axis must
be computed. The lower limit is obtained computing first the har-
monic mean as a function of x1-axis and then the arithmetic mean
as a function of x2-axis. If we denote with u(x1) the arithmetic
mean against x2-axis of the function f(x1, x2), it follows:

uðx1Þ¼
Z 0:5

�0:5
f ðx1;x2Þdx2¼1; for x12ð�0:5;�0:45Þ[ð0:45; 0:5Þ;

ð11Þ

uðx1Þ ¼
Z 0:5

�0:5
f ðx1; x2Þdx2 ¼ 1þ 9:45

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:2025� x2

1

q
;

for x1 2 ð�0:45; 0:45Þ: ð12Þ

The upper limit is obtained computing the harmonic mean of
the function u(x1):

Fig. 1. Structure’s periodicity cell of a SMC material with 27% fibers volume
fraction. The points A–H are given with their coordinates.
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