
Implementation and testing of Lanczos-based algorithms for Random-Phase
Approximation eigenproblems

Myrta Grüning a,e,⇑, Andrea Marini b,c,d, Xavier Gonze e

a Centre for Computational Physics and Physics Department, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
b European Theoretical Spectroscopy Facility, Physics Department, University ‘‘Tor Vergata’’, I-00133 Rome, Italy
c Nano-Bio Spectroscopy Group, Universidad del Paı́s Vasco, E-20018 San Sebastián, Spain
d IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao, Spain
e European Theoretical Spectroscopy Facility, NAPS/IMCN, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

a r t i c l e i n f o

Article history:
Received 4 February 2011
Received in revised form 16 February 2011
Accepted 18 February 2011
Available online 12 March 2011

Keywords:
Bethe–Salpeter equation
Time-dependent density functional theory
Iterative solvers
Tamm-Dancoff approximation

a b s t r a c t

The treatment of the Random-Phase Approximation Hamiltonians, encountered in different frameworks,
like time-dependent density functional theory or Bethe–Salpeter equation, is complicated by their non-
Hermicity. Compared to their Hermitian Hamiltonian counterparts, computational methods for the treat-
ment of non-Hermitian Hamiltonians are often less efficient and less stable, sometimes leading to the
breakdown of the method. Recently [Grüning et al. Nano Lett. 8 (2009) 2820], we have identified that
such Hamiltonians are usually pseudo-Hermitian. Exploiting this property, we have implemented an
algorithm of the Lanczos type for Random-Phase Approximation Hamiltonians that benefits from the
same stability and computational load as its Hermitian counterpart, and applied it to the study of the
optical response of carbon nanotubes. We present here the related theoretical grounds and technical
details, and study the performance of the algorithm for the calculation of the optical absorption of a mol-
ecule within the Bethe-Salpeter equation framework.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The Random-Phase Approximation (RPA) Hamiltonian HRPA

appears in several areas of physics and theoretical chemistry, and
describes strong collective excitations of a many-body system as
the linear combination of particle–hole pairs jkli [1,2]. It has the
form

HRPA ¼
R C

�C� �R�

� �
; ð1Þ

where the resonant R and anti-resonant �R⁄ blocks are Hermitian
matrices in the subspace generated by particle–hole pairs propagat-
ing respectively forward (jkli) and backward (j ~lki) in time (in what
follows a, k indicate particles and b, l holes), and the C and �C�

blocks are symmetric matrices coupling the particle–hole pairs
propagating forward and backward in time. The excitation energies
and strengths of the many-body system are the eigensolutions of
Eq. (1). Note that the RPA Hamiltonian is not Hermitian, thus its
eigenvalues are not necessarily real.

In quantum chemistry, condensed matter physics, nanoscience,
or nuclear physics, the RPA Hamiltonian appears within the state-

of-the-art approaches for calculating the excitations in an
electronic system: the time-dependent density functional theory
[3] (TD-DFT) and the Bethe–Salpeter [4] (BS) equation [5]. In the
commonly used approximations to TD-DFT (e.g. real exchange-
correlation kernel) and BS equation (static screening of the interac-
tion), all the eigenvalues are real. TD-DFT is particularly successful for
finite systems, namely molecules and molecular clusters, while the
BS approach is mostly used for extended systems, like periodic bulk
solids and, in general, for systems where excitonic effects play an
important role [6]. Nowadays, the application of these approaches
to the computation of the time-dependent responses of more and
more complex systems, such as large bio-molecules or nanostruc-
tures, poses the problem of efficient solution of the eigenproblem
for HRPA. For large matrices, the direct diagonalization is usually
not possible, and one has to resort to iterative algorithms, such as
the Lanczos method. Such algorithms exist for both Hermitian and
non-Hermitian Hamiltonian. However, compared to their Hermitian
Hamiltonian counterparts, algorithms for the treatment of non-
Hermitian Hamiltonians are often less efficient and less stable,
sometimes leading to the breakdown of the method [7,8].

Within TDDFT, the very convenient Hermitian formulation of
the eigenvalue problem proposed by Casida [9] exists. However
its application is limited to finite systems and purely local effective
potentials for which the HRPA is real. The presence of e.g. spin-orbit
coupling prevents the application of Casida’s approach. In general a
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further approximation is introduced, the so-called Tamm–Dancoff
approximation (TDA), that considers only particle–hole pairs prop-
agating forward in time, so that the TDA Hamiltonian corresponds
just to the resonant part, HTDA = R. The TDA is often sufficiently
accurate, as in the case of optical absorption spectra of periodic
bulk systems. On the other hand, the TDA becomes inaccurate or
even unphysical in the case of electron-energy-loss spectra [10],
reflectivity spectra [11], and also for the optical absorption of
low-dimensional systems, e.g. nanosystems or p-conjugated mole-
cules [12,13]. In a previous work [12] we have implemented an ap-
proach for the solution of the RPA Hamiltonian, that avoids the
TDA, and still benefits of the efficiency and robustness of the algo-
rithms for the Hermitian case. This approach has been already suc-
cessfully applied to the calculation of the optical absorption and
energy-loss spectra of a carbon nanotube. While our previous work
focussed on the implications of the TDA for nanoscale systems, in
this work the focus is on the theoretical grounds and some more
technical aspects of that approach. We show here how the Lanczos
algorithm for Hermitian eigenproblem (Section 2.1) can be used for
the RPA Hamiltonian, that is pseudo-Hermitian with real eigen-
values (Section 2.3), by simply redefining the inner product (Sec-
tion 3.1). We obtain (Section 3.2) the generalization to complex
matrices of the scheme proposed by Van der Vorst [14]. The ob-
tained algorithm is then further specialized (Section 3.3) to the
calculation of the macroscopic dielectric function (from which
the optical absorption and energy-loss spectra are derived) and fi-
nally applied to the calculation of the optical response of the tri-
chloro-bezene isomers within the BS equation framework
(Section 4), to show the algorithm accuracy (Section 4.2) and effi-
ciency (Section 4.3).

2. Mathematical background

This section reviews briefly the two key ‘‘ingredients’’ of the
presented approach: the Lanczos method for the solution of
(non-)Hermitian eigenproblems, and the definition of pseudo-
Hermitian matrix. The Lanczos method allows to calculate by
recursion the eigenvalues, and eigenvectors, or directly the
response spectrum, of large matrices. The pseudo-Hermicity is
related to the reality of the eigenvalues of a matrix and
with the possibility of transforming the matrix into a Hermitian
matrix.

2.1. Lanczos method for Hermitian eigenproblems

The Lanczos recursion method [7] is a general algorithm for
solving eigenproblems for a Hermitian operator H. This algorithm
recursively builds an orthonormal basis {jqii} (Lanczos basis) in
which H is represented as a real symmetric tridiagonal matrix,

Tk ¼

a1 b2 0 � � � 0

b2 a2 b3
..
.

0 . .
. . .

. . .
.

0
..
.

bk�1 ak�1 bk

0 � � � 0 bk ak

0
BBBBBBBB@

1
CCCCCCCCA
: ð2Þ

The first vector jq1i of the Lanczos basis is set equal to a (normal-
ized) given vector ju0i/ku0k. The next vectors are calculated from
the three-term relation

jQ jþ1i ¼ Hjqji � ajjqji � bjjqj�1i; ð3Þ

where

aj ¼ hqjjHjqji; ð4Þ
bjþ1 ¼ kQ jþ1k; ð5Þ
jqjþ1i ¼ jQjþ1i=bjþ1: ð6Þ

The algorithm is schematically described in Figs. 1 and 2. In steps
(A)–(D) the variables are initialized before entering the condi-
tional loop [steps (E)–(K)]. Here, at each iteration a new vector
of the Lanczos basis is computed till the convergence criteria is
met. The cost per iteration is given mainly by the matrix–vector
multiplication at step (K), that is of O(N2) for non-sparse matrices,
with N the size of H. In terms of memory and storage, if one is
just interested in the eigenvalues, at each iteration only three
vectors (jqn�1i, jqni, jqn+1i) are needed, and only two reals (ai, bi)
need to be stored. At the end of the process one gets the
tridiagonal matrix of Eq. (2) of dimension k � k, that can be
diagonalized with a cost / k. Compared with the standard diago-
nalization, the advantages are the memory usage, and the compu-
tational cost / kN2 (for diagonalization is O(N3)) as soon as the
number of iterations k� N. This is in practice always the case
when we are interested only in a portion of the spectrum of H
[15].

As first highlighted by Haydock [16,17], an additional advantage
of Lanczos recursive approach is the possibility of calculating the
resolvent (x � H)�1 matrix elements, bypassing completely
the diagonalization. In fact the resolvent for the state ju0i takes
the form of a continued fraction.

hu0jðx� HÞ�1ju0i ¼ ku0k2 1

ðx� a1Þ � b2
2

ðx�a2Þ�
b2

3
���

: ð7Þ

Other matrix elements can be then calculated by recursion (see
Appendix A).

2.2. Lanczos method for non-Hermitian eigenproblems

The Lanczos recursive approach can be extended to the non-
Hermitian case [7]. For a non-Hermitian matrix H, that we suppose
diagonalizable, the action on a ket jvi differs from the action on a
bra hvj: no orthogonal basis set exists, that could transform it into
a diagonal form. The most straightforward extension of the Lanczos
procedure illustrated in the previous subsection is the Arnoldi
recursive approach that transforms H into an upper-Hessenberg
matrix, instead of a tridiagonal one, and thus presents clear
computational disadvantages with respect to the Hermitian case
[18].

Fig. 1. Hermitian Lanczos algorithm.
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