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a b s t r a c t

We use an improved version of the standard effective mass approximation model to describe quantum
effects in nanometric semiconductor quantum dots (QDs). This allows analytic computation of relevant
quantities to a very large extent. We obtain, as a function of the QD radius, in precise domains of validity,
the QD excitonic ground state energy and its Stark and Lamb shifts. Finally, the Purcell effect in QDs is
shown to lead to potential QD-LASER emitting in the range of visible light.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

As semiconducting quantum dots (QDs) display standard atom-
ic physics properties, they may be thought as giant artificial atoms,
with adjustable quantized energy spectra through their sizes and
shapes. They are of interest in a wide range of research areas
[1–5]. In such structures, Quantum Size Effects (QSE) are character-
ized by a blue-shift in the semiconductor optical spectrum, due to
the increase of the charge carrier confinement energy. Results on
QSE in low-dimensional semiconductor structures and modern
approaches to this problem are discussed in [6,7]. In this paper,
the QD problem is dealt within a modified effective mass approx-
imation (EMA) model, to which a pseudo-potential is added (cf.
Section 2). This partially removes the over-estimation of the elec-
tron–hole pair confinement energy for small QDs, and allows the
analytic determination of the Kayanuma function g(k) [8].

The physics of QDs, particularly in regard to the QD interaction
with an external field, is very attractive. It gives rise to Quantum-
Confinement Stark Effects (QCSE) [9,10], which manifest them-
selves through a red-shift of exciton photoluminescence [11]. In
Section 3, we use the EMA model to obtain analytic criterions on
the QD radius and the applied electric field amplitude, as a result
of the interplay between electron–hole Coulomb interaction and
an additional polarization energy [12]. When the electromagnetic
field is quantized, an energy level Lamb shift occurs [13,14]. While
it is a continual subject of research [15,16], it seems to be unknown
for QDs. In Section 4, we use the EMA framework to uncover an

observable negative Lamb shift for the electron–hole pair ground
state, in judiciously chosen QDs. In Section 5, the Purcell effect, a
test bed for many applications [17–19], is studied for QDs. A con-
dition for its occurrence, despite the action of unfavorable Rabi
oscillations, is derived. This opens the way for a visible light QD-
LASER, driven by a Purcell effect.

2. Quantum Size Effects

In a standard EMA model, an electron and a hole, of effective
masses m�e;h, behave as free particles in a spherical infinite potential
well V(re,h). Their Coulomb interaction � e2

jreh
is treated by a varia-

tional procedure. To handle the interplay between confinement en-
ergy (scaling as / R�2), and Coulomb potential (scaling as / R�1),
two regimes are singled out by the values of the ratio of the QD ra-
dius R to the bulk Mott–Wannier exciton Bohr radius a* [8]. Here,
as far as Stark, Lamb or Purcell effects are concerned, the so-called
weak field limit, by which the charge carriers cannot overstep the
real confining potential by tunneling, is assumed.

In a strong confinement regime, where R [ 2a*, the electron–
hole relative motion is affected by the infinite potential well, such
that the electron–hole pair stays quasi-uncorrelated. To exhibit the
excitonic behavior of the electron–hole pair, both electron and
hole, individually confined and being in their ground state, the
following trial function /ðre; rhÞ / e�

r
2

reh
a� , of parameter r, is to be

used. The electron–hole pair ground state energy Estrong
eh ¼ Eeh�

1:786 e2

jR� 0:248E�, given in [8], is retrieved up to R
a�
� �2 order, l

being the electron–hole pair reduced mass, Eeh ¼ p2

2lR2 its ground

state confinement energy, and E* the excitonic Rydberg energy.
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In the weak confinement regime, where R J 4a*, the exciton
behaves as a quasi-particle of mass M ¼ m�e þm�h. Then, the leading
contribution to its ground state energy is �E*, while its total trans-
lational motion is p2

2MR2. To improve the accuracy of the exciton
ground state energy �E� þ p2

2MR2, a phenomenological function g(k)
of the mass ratio k ¼ m�

h
m�e

was introduced in [8]. The exciton is
thought as a rigid sphere of radius g(k)a*, and its center-of-mass
cannot reach the infinite potential well boundary unless the elec-
tron–hole relative motion undergoes a strong deformation [8].
Thus, adding a ground state plane wave in the center-of-mass coor-
dinates to the trial function /(re,rh), we obtain, up to a�

R

� �3 order,

Eweak
eh ¼ �E� þ p2

6lR2 þ p2

2MðR�gðkÞa�Þ2
, where gðkÞ ¼ 0:208 ð1þkÞ2

k . g(k) satis-

fies the electron–hole exchange symmetry, and Table 1 shows good
agreement with computational results.

However, Eweak
eh has a further kinetic energy term p2

6lR2 in the rel-
ative coordinates [8]. As the virial theorem should be satisfied in
these coordinates, this energy is already contained in the Rydberg
energy. To remove this contribution, we propose to add the pseu-
do-potential WðrehÞ ¼ � 32p2

9 E�
r2

eh

R2 e�2
reh
a� .1 This pseudo-potential also

decreases the exciton energy by ��19.9E* in the strong confinement
regime. Fig. 1 shows that the excitonic energy computed with W(reh)
shows a better fit to experimental results for 2R [ a*. The divergence
for very small QD size still persists as a consequence of the infinite
potential well assumption [20]. To improve predictive results in this
region, energy expansions may be carried out to a few more orders.
But, computations become so involved that the relevance of such an
approach can be questioned.

3. Quantum-Confinement Stark Effects

An electric field Ed, is applied along the z-axis of a cartesian
coordinates system with its origin at the QD center. Even if the
EMA model does not fully describe the QD behavior in the absence
of electric field, it can be still used to study QCSE in the weak field
limit but should include the dipolar interaction We h(reh) = Ed � deh,
deh being the exciton dipole moment. The quantity eEdR, where
Ed = jEdj, is treated as a perturbation. Following [22], we use here
the trial function /(re,rh), describing the electric field free elec-
tron–hole pair, but with electric field interaction factors e�

re;h
2 ze;h

of parameters re,h, to account for the spherical shape deformation
along Ed.

The Stark shift is determined, up to R
a� order, as DEstrong

Stark ¼
�CMe2E2

dR4 1þ Ceh
R
a�

� �
, where C � 0.018 and Ceh depends on the

semiconductor. The first contribution is the sum of the Stark shifts
undergone by the electron and hole ground states. The second con-
tribution expresses the remnant of electron–hole pair states as
exciton bound states. As the inside semiconducting QD dielectric
constant e is larger than the outside insulating matrix one, the
polarization energy P(re,rh) introduced in [23] is also considered,
and its relative role vs. the Coulomb potential explored. Explicit
analytical expressions for any Stark effect quantity, pertaining
either to the polarization energy or to its combined effect with
Coulomb potential, are given in [12], and successfully confronted
with computational data [10].

For CdS0.12Se0.88 microcrystals, the strong confinement regime
and the weak field limit condition are fulfilled for Ed �
12.5 kV cm�1 and R [ 30 Å, if Coulomb interaction and polariza-
tion energy are taken to account. When the polarization energy
is considered alone, the strong confinement regime is no longer va-
lid, because r 6 0. For R [ 30 Å, Fig. 2 shows that the Stark shift,
computed up to the zeroth order, is underestimated. The results

become much more accurate, when first order terms are included,
and seem efficient enough for describing QCSE in spherical semi-
conductor QDs. As soon as R J 30 Å, our results diverge from
experimental data, as expected. When Coulomb interaction and
polarization energy are included in the strong confinement regime,
the weak field limit is no longer valid for QD radii 30 Å [ R [ 50 Å.
Thus, a future work may focus on conciliating strong confinement
regime and strong field limit. The case of the weak confinement re-
gime is much more difficult to study, even in the weak field limit.

4. Lamb shift

The Lamb effect comes from the effect of a quantized electro-
magnetic field on the motion of a quantum particle of mass m*

and charge qe in a potential U(r). Two popular methods to compute

Table 1
Comparison of g(k) values from computational results of [8] and theoretical results
given by equation gðkÞ ¼ 0:208 ð1þkÞ2

k .

k 1 3 5

gcomp(k) 0.73 1.1 1.4
gtheo(k) 0.83 1.1 1.5
Relative error (%) �14 <1 �7

Fig. 1. Electron–hole pair ground state energy as a function of the QD radius
computed for a confining infinite potential well with (—-) or without (—) the
presence of the pseudo-potential W(re,h) and for a confining finite potential step of
height V0 � 1eV (–�–) [20] and compared to experimental results for CdS micro-
crystallites [21].

1 W(reh) should be attractive at distances �a* to promote excitonic state with
typical size around a*, repulsive at short distances to penalize small size excitonic
states, and exponentially small at large distances.

Fig. 2. Stark shift for electron–hole pair as a function of the QD radius, when
Ed = 12.5kV.cm�1, only including the Coulomb interaction (Ceh � � 0.163) up to the
zeroth (—) or to the first (—-) order, only including the polarization energy
(Ceh � � 0.042) up to the first order (–�–), and including both the Coulomb
interaction and the polarization energy (Ceh � � 0.205) up to the first order (–��–),
in comparison with results (+) from [9].
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