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a b s t r a c t

A nine-nodded rectangular element with nine degrees of freedom at each node is developed for the bend-
ing and vibration analysis of laminated and sandwich composite plates. The theory accounts for parabolic
distribution of the transverse shear strains through thickness of the plate and rotary inertia effects. The
parametric effects of plate: aspect ratio, angle of fiber orientation, side-to-thickness ratio and degree of
orthotropy on in-plane stresses, transverse shearing stresses, displacements, and fundamental frequen-
cies are shown. Results are compared with existing numerical solutions.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

The use of sandwich structures in marine, transport, civil con-
struction, aerospace application is growing rapidly due to their
outstanding characteristics like high resistance to fatigue failure
induced by acoustic pressure, high strength and stiffness for the gi-
ven weight, etc. The first departure from classical plate theory
(CLPT) was introduced by Reissner, who derived his first-order
plate theory for homogenous isotropic plates in equilibrium using
an assumed stress approach. Mindlin extended this theory to the
elastodynamic analysis of plates using a displacement-based
first-order that also includes rotary inertia effects.

Since the pioneering works of Reissner and Mindlin, numerous
first-, second- and higher-order plate theories have been proposed.
In general, these theories are based on either equivalent single-
layer or layerwise assumptions utilizing displacement-based,
stress-based, and mixed formulations. In single-layer theory, the
displacement components represent the weighted average through
the thickness of the sandwich plates.

The first-order shear deformation theory (FSDT) first developed
by Yang et al. [1] gives a state of constant shear strain through the
thickness of the plate. However, according to three dimensional
(3D) elasticity theory, the shear strain varies at least quadratically
through the thickness. The so-called shear correction factors were
introduced to correct the discrepancy in the shear forces of FSDT

and 3D elasticity theories. The value of shear correction factors de-
pend on the constituent ply properties, lamination scheme, geom-
etry and boundary conditions.

Higher-order deformation plate theories (HSDT) are those in
which the displacement are expanded to quadratic or higher pow-
ers of the thickness co-ordinate. Of this higher-order theories, the
one proposed by Reddy and co-worker [2] was the first to obtain
the equilibrium equations in a consistent manner using the princi-
ple of virtual displacements. Lewinski investigated the mathemat-
ical aspects of Reddy’s theory, while Rohwer [3] showed that the
higher-order theory of Reddy is one of the best considering various
parameters.

The finite element approach has proved to be a powerful and
widely applicable method for the bending and vibration analysis
of complex problems for which analytical solutions are nearly
impossible to solve [4–6]. Numerous finite element models of the
various theories have been put forward over the year. Finite ele-
ment solutions for laminated sandwich plates were presented by
Khatua and Cheung [7] using triangular and rectangular element
which permit freedom of in-plane displacements. Based on FSDT,
the Mindlin plate element are essentially based on Reissner–Mind-
lin assumption with application to both thick and thin plates. How-
ever, a defect of this class of elements was detected when thin
plates were analyzed. For the HSDT, Phan and Reddy [8] developed
displacement-based finite element models based on Reddy’s spe-
cial third-order theory used C1 interpolation functions for the
transverse displacement and C0 interpolation functions for the
other displacements.
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In this paper the simple refined higher-order displacement the-
ory of Reddy [9] with a C0 finite element formulation (the continu-
ity of the unknown only had to occur between elements) is used to
study bending and vibration analysis of laminated composite and
sandwich plates. The accuracy of results of original computer pro-
gram, using MATLAB programming language will be verified
through existing examples from the literature.

2. Theory and formulation

Consider a laminated plate composed of n orthotropic lamina.
The integer k denotes the layer number that starts from the plate
bottom (Fig. 1). The displacement field is assumed in the following
form [9].

uðx; y; z; tÞ ¼ u0ðx; y; tÞ þ zhxðx; y; tÞ þ z2u�0ðx; y; tÞ þ z3h�xðx; y; tÞ
vðx; y; z; tÞ ¼ v0ðx; y; tÞ þ zhyðx; y; tÞ þ z2v�0ðx; y; tÞ þ z3h�yðx; y; tÞ
wðx; y; z; tÞ ¼ w0ðx; y; tÞ

ð1Þ

In these equations u, v, w are the displacement components of a
generic point in plate space in the x-, y-, z-directions, respectively;
u0, v0 are in-plane displacements of a point laying in the middle
plane, and hx, hy are the normal rotations about the y and x axes
respectively. The parameters u�0;v�0; h

�
x; h

�
y are higher-order terms

in the Taylor’s series expansion.
By substituting Eq. (1) into the general linear strain–displace-

ment relations, the following relations are obtained

ex ¼ ex0 þ zkx þ z2e�x0 þ z3k�x;

ey ¼ ey0 þ z � ky þ z2e�y0 þ z3k�y;

cxy ¼ cxy0 þ zkxy þ z2c�xy0 þ z3k�xy;

cxz ¼ cxz0 þ zkxz þ z2c�xz0;

cyz ¼ cyz0 þ zkyz þ z2c�yz0 ð2Þ

The constitutive relations for a typical orthotropic kth lamina
with laminate co-ordinate axes (x, y, z) can be written as

frgk ¼ frx ry rxy rxz ryz gT
k ¼ fQgkf ex ey cxy cxz cyz gT

k

ð3Þ

where the terms of fQgk matrix of layer k are referred to the lami-
nate axes and can obtained from the {Q}k corresponding to the fiber
orientations with appropriate transformation, as outlined in litera-
ture [10] (the superscript T refers the transpose of a matrix/vector)

3. Finite element model

In the present work a C0 nine-node quadrilateral finite element
with nine degrees of freedom per node is used. The displacement
vector {d} structures of any point on the mid-plane is given by

d ¼
X9

i¼1

Niðn;gÞdi ð4Þ

where di ¼ fu0i v01 w0i hxi hyi u�0i v�0i h�xi h�yi g is displace-
ment vector corresponding to node i, Ni(n, g) are the interpolating
or shape functions associated with node i. n, g are the natural co-
ordinates.

With the generalized displacement vector {d} known at all point
within the element, the generalized strain vector at any point given
by

e ¼
X9

i¼1

Bidi ð5Þ

where Bi is a differential operator matrix of shape function.
The governing differential equations of motion can be derived

using Hamilton’s principle

d
Z t2

t1

ðU � T þ AÞdt ¼ 0 ð6Þ

where t is the time, U is total strain energy of the system, T is the
total kinetic energy of the system and A is the work done by exter-
nal forces.

Using the standard finite element procedure, the governing dif-
ferential equations of motion can be rewritten as

½Me�f€dg þ ½Ke�fdg ¼ fFeg ð7Þ
where the element stiffness matrix:

½Ke� ¼
Z Z

½B�T ½D�½B�dxdy ð8Þ

the element mass matrix

½M� ¼
Z Z

½N�T ½m�½N�dxdy ð9Þ

with

½m� ¼

I0 0 0 I1 0 I2 0 I3 0
0 I0 0 0 I1 0 I2 0 I3

0 0 I0 0 0 0 0 0 0
I1 0 0 I2 0 I3 0 I4 0
0 I1 0 0 I2 0 I3 0 I4

I2 0 0 I3 0 I4 0 I5 0
0 I2 0 0 I3 0 I4 0 I5

I3 0 0 I4 0 I5 0 I6 0
0 I3 0 0 I4 0 I5 0 I6

2
66666666666666664

3
77777777777777775

ð10Þ

where Ii ¼
Pn

l¼1

Phlþ1
hl

ziql dz; i ¼ 0;1; . . . ;6
and the nodal load vector:

fFeg ¼
Z Z

½N�T qdxdy ð11Þ

After evaluating the stiffness and mass matrices for all ele-
ments, they have been assembled together to form the overall stiff-
ness and mass matrix [K], [M] of the structure. We obtain the
system equation as following:

½M�f€qg þ ½K�fqg ¼ fFg ð12Þ

From the system equation, let {F} = 0, we have the equation of
the free vibration problem:

½M�f€qg þ ½K�fqg ¼ 0 ð13Þ
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Fig. 1. A typical sandwich plate geometry with laminate reference axes, and fiber
orientation.
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