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a b s t r a c t

This article concerns the dimensional analysis of the complex thermomechanical problem arising during
through-hardening of cylindrical steel components. A complete and independent set of physically based
dimensionless numbers was derived using the weak formulation method and the individual effects of
dimensionless numbers with sensitive material parameters were investigated by finite element simula-
tions. The results demonstrate potential of the approach in simplification of the model and the identifi-
cation of physically relevant dimensionless combinations.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Isotropic dimensional changes during through-hardening of
steel workpieces are unavoidable due to density difference be-
tween the initial and final microstructures. Beside this, shape
changes also occur due to inhomogeneous plastic deformation dur-
ing the process. In contrast to transformation free quenching which
necessitates overrun of a critical Biot number (Bip) above which
yielding can occur [1]; anisotropy in dimensional changes are the-
oretically unavoidable after through-hardening due to transforma-
tion-induced plasticity (TRIP) which occurs without a yield limit
[2].

The prediction of quenching distortion is a challenging task that
requires solution of a complicated thermo-elastoplastic model.
Currently, the widely used solution technique is the numerical
solution of the problem that relies on time-consuming computer
simulations. Accordingly, there is a practical interest in simplifica-
tion of the problem using analytical methods. Dimensional analysis
is one of the possible candidates for this purpose. In contrast to the
diversity of its applications in fluid dynamics, dimensional analysis
is not so frequently applied in solid mechanics, especially in
thermo-elastoplasticity. Some applications to elastic shells and to
turning process of steel components can be found in [3] and [4],
respectively.

Dimensional analysis allows simplification of the model and
identification of the physically relevant dimensionless combina-

tions independent from the individual parameters [5,6]. In addi-
tion, proper scaling exhibits its advantage in numerical
simulations since the results are directly comparable. Moreover,
scaling experiments can be performed on prototypes and questions
of similarity can be dealt with dimensional analysis [7]. For exam-
ple, prototyping can be a favorable tool in the future to predict the
distortion of large components such as shafts and bearings races
used in ships. For such components, the removal of the heat treat-
ment distortion by hard machining is extremely expensive and
may be impossible for some cases.

Former studies demonstrated the potential of dimensional anal-
ysis in the investigation of heat treatment distortion. For example,
early studies of Frerichs et al. [8] and Wolff et al. [1] clarified many
aspects of dimensional analysis of transformation free quenching
process, while Landek et al. [9] proposed a technique for approxi-
mate prediction of heat treatment distortion using the dimension-
less quantities. Finally, Wolff et al. [10] suggested an extension of
the model applicable to through-hardening and Simsir et al. [11]
illustrated the significance of Biot number with a discussion of
general problems and workarounds for the proposed extension.

In this study, the former studies [10,11] were extended by inves-
tigation of the effect of four dimensionless numbers. The selection
was based on sensitivity analysis to ensure the significance of inves-
tigated dimensionless numbers. Sensitivity analysis revealed the
martensite-start temperature (Ms), Koistinen–Marburger parame-
ter (Mo), thermal expansion coefficient (a) and the transformation
strain (ept) as highly sensitive parameters. The dimensionless num-
bers containing those parameters were nominated as the ‘‘martens-
ite-start number” (

Q
3), ‘‘Koistinen–Marburger number” (

Q
4),
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‘‘thermal strain number” (
Q

5) and ‘‘transformation strain number”
(
Q

6), respectively. Then, the investigations were performed using
computer simulations in which the investigated dimensionless
number was varied independently while the remaining were kept
at their reference values. The results were presented as functions
of Biot number (

Q
1).

The rest of the paper is organized as follows: In Section 2, the
underlying mathematical model is summarized with a discussion
of possible modifications and critical Biot number (Bi�) concept.
In Section 3, numerical procedure for the simulations, variation
strategy for dimensionless numbers and evaluation of results is
presented. In Section 4, the results are discussed and elaborated
considering possible physical mechanisms. Finally, the study is
concluded with an outlook of the research in Section 5.

2. Mathematical model

2.1. Dimensional analysis

The distortion of cylindrical components such as shafts, discs
and rings after quench hardening can be described by a mathemat-
ical model with 30 parameters that spans over four independent
dimensions – mass (M ), length (L), time (T), temperature (H)
[12]. Table 1 summarizes the involved parameters with their corre-
sponding dimensions. On this table, it should be noted that all
material properties are phase dependent and individual parame-
ters for each phase are not written explicitly for the sake of brevity.
Henceforth, the properties of austenite and martensite phases are
differentiated in the text using ‘‘a” and ‘‘m” subscripts, respectively.

According to Buckingham’s
Q

theorem [7], the mathematical
model can be reduced to a dimensionless equivalent governed by
26 dimensionless numbers. The determination of complete and
independent set of dimensionless numbers can be performed by
purely algebraic method – i.e. Buckingham‘s approach – or weak
formulation of the problem in terms of dimensionless quantities
[5]. In [10], Wolff et al. presented an application of the former
method. However, the physical relevance of dimensionless number
set derived by purely algebraic method may be obscure since the
choice of a dimensionless number set from infinite number of pos-
sible sets is performed heuristically. On the other hand, the phys-
ical relevance of dimensionless numbers derived using the weak
formulation method is ensured since the dimensionless numbers
originate from the governing equations.

In this study, an independent and complete set of dimensionless
numbers governing the through-hardening distortion was derived
using the weak formulation method. Table 2 illustrates this set
with nomination and categorization of dimensionless numbers

based on their appearance in governing equations and their phys-
ical interpretations.

The set was calculated according to following procedure:

(1) The problem is simplified according to the following
assumptions:
– The temperature dependence of material parameters was

neglected by using suitable average values. The major
consequence of this assumption is the limitation of the
quantitative application of the method to a limited range
of Biot numbers. The details of the averaging method and
its consequences can be found elsewhere [11].

– The phase dependence of E, m, n, c and a was neglected in
formulation for simplicity. However, based on former
experience, the ratio of those parameters for different
phases (Em/Ea, nm/na, etc.), which can be considered as
additional dimensionless numbers, was kept constant
during variations. The validity of this approach is justified
in Section 4.3.

– Through-hardening must be achieved, i.e., no phase
transformation other than martensitic transformation
should occur in the system. For the investigated steel,
this requires that no bainitic phase transformation occur
before martensitic transformation. In other words, the
Biot number should be higher than ‘‘the critical Biot
number (Bi�)”. Further information about the critical Biot
number can be found in Section 2.2.

(2) Although the following points are not important for theoret-
ical justification of the model on conceptual basis, they
should be considered additionally for practical usage:
– In order to avoid the additional dimensionless numbers

governing heating and austenization process, the refer-
ence (initial) and final state for the problem was set to
pure austenite at the austenization temperature (To)
and martensite + retained austenite mixture at ambient
temperature (T1). However, such a reference state is
not feasible for real life distortion problems where the
natural reference state is the initial microstructure
(spheroidized carbides in a ferritic matrix at room tem-
perature) at RT. A convenient remedy for this problem
is to keep the thermo-metallurgical strain at To with
respect to initial microstructure at RT constant. This
necessitates to keep qa(To) constant, but the variations
in dimensionless numbers can be done using the other
parameters. Consequently, this additional constraint
makes the use of L(20 �C), D(20 �C) equivalent to L(To),
D(To) in the definition of the dimensionless numbers.

Table 1
List of model parameters with their corresponding dimensions.

M L T H M L T H

Geometry Transformation
L Length 0 1 0 0 DH Transformation enthalpy 0 2 �2 0
D Outer diameter 0 1 0 0 Ms Martensite start temperature 0 0 0 1
Di;b Inner Diameter (bottom) 0 1 0 0 Mo Koistinen–Marburger Temp. 0 0 0 1
Di;t Inner diameter (top) 0 1 0 0 j TRIP constant �1 �1 2 0

Process Thermomechanical
T0 Austenization temperature 0 0 0 1 a Thermal expansion coefficient 0 0 0 �1
T1 Ambient temperature 0 0 0 1 E Elastic modulus 1 1 �2 0
h Heat transfer coefficient �1 3 �3 �1 m Poisson‘s ratio 0 0 0 0

Thermal K Ramberg–Osgood coefficient 1 1 �2 0
q Density 1 �3 0 0
c Specific heat capacity 0 �2 �2 �1 n Ramberg–Osgood exponent 0 0 0 0
k Thermal conductivity �1 2 �3 �1 ro Yield strength 1 1 �2 0
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