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a b s t r a c t

In the present work, finite element formulations for nonlocal elastic (i) Euler–Bernoulli beam and (ii) Kirc-
hoff plate have been reported. Nonlocal differential elasticity theory is considered. Galerkin finite element
technique has been employed. For both nanobeams and nanoplates weak forms of governing equations are
derived and energy functionals are obtained. Present finite element results for bending, vibration and
buckling for nonlocal beam with four classical boundary conditions are computed. These results are in
good agreement with those reported in the literature. Further, bending, vibration and buckling analyses
are carried out for stepped nanobeam. Furthermore, using present finite element bending, vibration and
buckling analyses for nonlocal nanoplate are carried out. Present formulation will be useful for structural
analyses of nanostructures with complex geometry, material property, loading and boundary conditions.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Due to outstanding physical, chemical, mechanical and elec-
tronic properties [1–4], nano-sized structures [5–8] have attracted
a great deal of attention in scientific community. As conduction of
experiments in nano-level are difficult to control and theoretical
atomistic models are computationally intensive for relatively large
scale nanostructures, the continuum and semi-continuum [9–11]
models have been proven to be important tools in the study of
the nanostructures. Considering the continuum models, the use
of traditional elasticity theory may lead to erroneous results as
continuum assumption may not hold valid in the small scales. This
fact triggered development of various micro-continuum theories
such as couple stress theory [12], micro-morphic theory [13],
strain gradient elasticity theory [14] and nonlocal elasticity theory
[15]. Among these theories, nonlocal elasticity theory has been
widely applied to various problems of physics including lattice dis-
persion of elastic waves and dislocation mechanics [16].

Chen et al. [17] proved that nonlocal elasticity theory is consis-
tent with the molecular dynamics. This has made the nonlocal
elasticity theory an efficient alternate to atomistic methods. Ini-
tially Peddieson et al. [18] applied present nonlocal elasticity the-
ory and studied flexural behavior of one dimensional
nanostructures. Since then a large number of research activities
using nonlocal elasticity theory have taken place. These include
analyses of nanobeams [19–26], nanoplates [27–32] and nano-
shells [33–35]. In the analyses of nanostructures, nonlocal differen-

tial elasticity (or nonlocal stress gradient elasticity) has gained
more popularity among researchers as compared to the nonlocal
integral elasticity [33] due to its simplicity.

So far two methodologies have been used extensively for
solving the governing differential equations arising in structural
analysis of nonlocal elastic nanostructures. These are Navier’s meth-
od [27,28,32] and Differential Quadrature Method (DQM)
[20,21,29,30]. However it is well known that finite element method
in contrast to these methods can effectively handle more complex
geometry, material property, boundary and/or loading conditions.
Construction of variational principles in the framework of nonlocal
integral elasticity has been reported by Polizzotto [36]. Pisano
et al. [37,38] reported the finite element procedure for nonlocal inte-
gral elasticity. Recently Adali [39,40] and Shakouri et al. [41] have
devised traditional variational methods based on nonlocal differen-
tial elasticity for the analysis of carbon nanotube. However to the
authors’ best knowledge, the finite element analysis of nonlocal
elastic structures with nonlocal differential elasticity approach is
not available in the open literature. In the present work, finite ele-
ment formulation for nonlocal differential elasticity approach of Eu-
ler–Bernoulli beam theory and classical plate theory have been
reported. Expressions for quadratic functionals have also been given.

2. Review of governing equations

2.1. Nonlocal beam

Formulation for bending, vibration and buckling of nonlocal Eu-
ler–Bernoulli beam has been reported by Reddy [42]. To write the
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governing equations, we assume the follow reference coordinate
system: x, y and z axes are taken along the length, width and thick-
ness of the beam, respectively. Using the principle of virtual work
following equilibrium equations are obtained:
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The constitutive relation according to nonlocal differential elas-
ticity takes the following form for the beam:
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The stress resultants can be written in terms of displacements
as follows:
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Putting Eq. (4) into Eq. (1) and assuming, wbðx; tÞ ¼WbðxÞeixbt

we get the following governing equation in terms of displacement:
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It can be noted that, by putting l = 0, in Eq. (6), governing equa-
tion for a local beam can be retrieved.

2.2. Nonlocal plate

Formulation for bending, vibration and buckling of nonlocal
plate based on classical plate theory has been reported by Pradhan
and Phadikar [27,28,46]. Following coordinate system has been

chosen to write the equations. Origin is chosen at one corner of
the plate. x, y and z coordinate axes are taken along the length,
width and thickness of the plate, respectively. Following equilib-
rium equations is obtained using the principle of virtual work:
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Using the nonlocal constitutive relation, stress resultants are
written in terms of displacements as follows:
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Here Dij are various bending rigidities defined as
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Using Eqs. (10)–(12) and Eq. (7) and assuming
wpðx; tÞ ¼WpðxÞeixpt we get the following governing equation in
terms of displacements:

Nomenclature

a, b length and width of the plate element
[Bb], [Bp] buckling stiffness matrix for beam and plate respec-

tively
D11, D12, D22, D66 bending rigidities of the plate
Eb Young’s modulus of the beam material
E1, E2 Young’s moduli of the plate material
Fb, Fp functional for beam and plate respectively
G12 shear modulus of plate the plate material
h thickness of the plate
[Kb], [Kp] stiffness matrix for beam and plate respectively
l length of the beam element

mb
0;m

p
0 mass moment of inertia for beam and plate respectively

Mb moment resultant for the beam
Mxx

1 ;M
yy
1 ;M

xy
1 moment resultants for the plate

(n, s) local tangential and normal coordinate at the boundary

Nb
i ;N

p
i interpolation function for beam and plate respectively

Nxx
0 ;N

yy
0 ;N

xy
0 in-plane stress resultants for plate

[Mb], [Mp] mass matrix for beam and plate respectively
Mn, Mns, Vn boundary stress resultants
P axial load for the beambPb

cr ;
bPp

cr critical buckling loads for beam and plate respectively
qb, qp transverse distributed load for beam and plate respec-

tively

Qx, Qy shear stress resultants for the plate
SS, CL, FR simply-supported, clamped and free boundary condi-

tions respectively
ub

i ;u
p
i degree of freedom for beam and plate respectively

[Ub], [Up] degree of freedom vector for beam and plate respec-
tively

Vb shear stress resultant for the beam
ŵb; ŵp non-dimensional maximum deflection of beam and

plate respectively
wb (or Wb), wp (or Wp) deflection of beam and plate respectively
vb, vp weight function for beam and plate respectively
exx axial strain tensor for the beam
kb, kp ratio of actual buckling load and applied in-plane loads

for beam and plate respectively
l nonlocal parameter
m12, m21 Poisson’s ratios of plate
qb, qp density of the beam material and plate material respec-

tively
xb, xp frequency of beam and plate respectively
x̂b; x̂p non-dimensional natural frequency of beam and plate

respectively
rxx axial stress tensor for the beam
r2 Laplacian operator in two dimensional cartesian coordi-

nate system
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