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This paper studies the dispersion relation of waves propagating in 1D nanostructures with initial axial
stress. Based on a nonlocal elastic model incorporating with strain gradient, the governing equations
for longitudinal and transverse waves in bars and beams have been derived, respectively. In this equation,
two scale parameters are introduced to describe size effect. The phase and group velocities of wave prop-
agation are obtained analytically, and the effects of initial axial loading on the wave speeds are analyzed.
Examples are presented for flexural waves propagating in single-walled and double-walled carbon nano-
tubes. Waves are always present for tensile initial axial force, while they may not exist unless the com-
pressive axial force fulfills a certain condition. In particular, the wave speeds are sensitive to initial force
for lower frequencies and insensitive to it for higher frequencies.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Due to the extraordinary mechanical properties of carbon nano-
tubes (CNTs) such as extreme flexibility and strength, they hold
substantial promise for use as super-stiff and strong nano-fibers
of novel composites and devices [1]. In recent years, mechanical
behaviors of CNTs including buckling, vibration, fracture, etc. have
become the subject of numerous theoretical and experimental
studies [2,3]. On one hand, controlled experiments in the nanome-
ter scale are difficult to realize. On the other hand, the molecular
dynamics method is feasible for systems with a small number of
molecules or atoms and remains formidable for large-scale sys-
tems; therefore continuum mechanics approach has been pre-
sented and regarded as an effective method and widely used for
studying the mechanical and physical properties of CNTs [4,5].

A large amount of experiment evidence has confirmed that the
mechanical properties of CNTs are diameter-dependent [6,7]. This
effect is usually called the size effect. The size effect seems not to
be explained according to the classical elasticity theory since no
scale is contained in the classical continuum mechanics. Hitherto,
several non-classical elasticity theories have been formulated to
capture the size effect [8-12].

In particular, the nonlocal beam model [13] developed from the
nonlocal elasticity theory established by Eringen [14] has been
widely adopted to investigate the size effect of the mechanical
properties of CNTs. For example, the influences of the scale effects
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on wave propagation have been analyzed for single-walled nano-
tubes (SWNTs) and double-walled nanotubes (DWNTs) [15,16].
In addition, for the buckling of single-layered graphene sheets sub-
jected to biaxial compressive loads, the scale effects have been also
investigated via nonlocal continuum mechanics [17].

On the other hand, CNTs or nanowires acting as basic fillers of
nanostructures often suffer from initial stresses due to residual
stress, thermal effect, surface effect, mismatch between the mate-
rial properties of CNTs and a surrounding medium, initial external
loads, etc. As we know, initial stresses present in a medium play a
key role in dominating the mechanical behaviors of the elastic
medium. In this field, the effects of initial stress on the non-coaxial
resonance of multi-walled nanotubes (MWNTs) have been investi-
gated by the theories of Euler-Bernoulli and Timoshenko beams,
respectively, in Wang and Cai [18] and Cai and Wang [19]. Based
on the Euler-Bernoulli beam theory, Zhang et al. [20] studied the
transverse vibrations of DWNTs under compressive axial load,
and pointed out that natural frequencies are dependent on the ax-
ial load and decrease with increasing of the axial load, and the
associated amplitude ratios of the inner to the outer tubes of
DWNTs are independent of the axial load. Lu et al. [21] adopted
a nonlocal Euler-Bernoulli beam model to analyze wave and vibra-
tion characteristics of one-dimensional (1D) nanostructures with
axially initial stress. Furthermore, Wang et al. [22] used a nonlocal
Timoshenko beam model to deal with free vibration of micro- and
nano-beams with initial stress. In their model, the nonlocal effect
was only considered for the normal stress, and neglected for the
shear stress. Considering the simultaneous presence of the non-
local effect both in the normal and shear stresses, Heireche et al.
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[23] studied the scale effects on wave propagation of DWNTs with
initial axial loading through the nonlocal beam models. The above-
mentioned investigations are related to 1D beam models. From
cylindrical shell models, Sun and Liu [24] also studied the depen-
dence of resonant frequencies on the axial initial stress, and found
that the intertube resonant frequencies are insensitive to the initial
axial stress in MWNTs, while the natural resonant frequency is
sensitive to the initial axial stress, especially for the lower ones.
Using the simplified Flugge shell model, Mitra and Gopalakrishnan
[25] analyzed the characteristics of wave propagation in multi-
walled carbon nanotubes.

This paper deals with the effects of initial axial stress on wave
propagation in SWNTs and DWNTs by generalized nonlocal beam
model. For this model, the nonlocal effects in elastic stresses and
strains are both considered. The phase and group velocities of
transverse waves are derived in explicit form for SWNTs and
DWNTs. The influences of the initial axial stress on the phase and
group velocities are discussed in detail.

2. Generalized nonlocal beam model

According to Eringen’s nonlocal elasticity theory, nonlocal stres-
ses o;; and classical (local) stresses o;; have the following integral
relation [14]

Gy(r) = / o (1 — P Gy(F)do(r), )

where «; is the nonlocal kernel, r and r denote position vectors.
Moreover, for an isotropic homogeneous medium, the classical
stresses obey

gjj = )»5,']'8;(;( + 2/181‘1',
&j = 0.5(Llij + Lljj),

in which 7 and u are the Lame constants; u; and Z;,-j are, respectively,
the displacement vector and strain tensor. Instead of the above inte-
gral relation, (1) can be alternatively expressed via differential form
[26], i.e.

(1-EV?)ay = gy, (2)

where l,zn is a material constant of nonlocality of length dimension,
and V2 denotes Laplacian operator.

On the other hand, if expanding elastic displacements up to the
terms containing strain gradients, we then have the nonlocal
strains in relation to the classical strains in a similar manner [27]

£i(r) = / (| — F)é () do(r), 3)
74

or

(1-PV)e; =&, (4)

where o, and [; are also nonlocal kernel and material constant of
nonlocality of length dimension. Generally speaking, o; is not iden-
tical to oy, and [, is also not identical to l;.. Under such circum-
stances, the constitutive relations of the nonlocal elasticity can be
further extended to a generalized form [28]

(1 =BV 0; = (1 — EV?)(Adjen + 2u&;)- (5)

Clearly, the theories of the classical nonlocal [14,26] or gradient [29]
elasticity are two special cases of ;=0 or [, = 0, respectively. Note
that the advantage of the nonlocal elasticity theory is capable of
removing the stress singularity near the dislocation core [26], but
the strain field is still singular. In contrast, the gradient elasticity
theory is solely capable of removing the strain singularity, rather
than the stress singularity [29]. The singularity of the stress and

strain fields near the dislocation core can be simultaneously re-
moved if [, and [; are both present [30].

In the present study, the focus is placed on 1D nano/micro bars
or beams, so it is reasonable to suppose that o, = 6,,= ¢;;=0 for
i # j. The only non-vanishing stress component is gy = o, which
satisfies

o—Lo" =E@e-I¢"), (6)

according to (5), where ¢ = &, E is Young’s modulus. Here, we use
the prime to stand for differentiation with respect to the suffixed
space variable x. As pointed out in [31], for dynamic problems,
the negative sign in front of the second-gradient strain should be
changed into the positive sign. For static problems, the negative
sign ensures the uniqueness of the desired solution and the positive
definiteness of the stored strain energy, while for dynamic prob-
lems, the positive sign results from approximation of discrete media
or lattice dynamics. Such an analysis for flexural waves propagating
in CNTs can also be found in [32]. However, when the second-
gradient stress is present, the dynamic behaviors related to the
constitutive equation with the negative sign in front of the
second-gradient strain were investigated in [33].

3. Effects of initial stress on longitudinal waves

For longitudinal waves propagating in 1D elastic bar subjected
to initial stress, the only non-vanishing displacement is
uy = u(x,t). Substituting the longitudinal strain ¢ = ou/dx into the
constitutive equation one gets

o=LCao" +Eu - Fu"). (7)

The equation of motion for 1D bars with initial stress takes the
form

Ac’ — Nou” = mil (3)

where m is the mass per unit length, A is the cross-sectional area,
and N is an initial axial force, which takes positive for compressive
loading and negative for tensile loading, respectively. Ny = 0 corre-
sponds to the classical case without initial axial force. A dot over
a variable denotes the time derivative.

Now eliminating ¢ from (7) and (8) leads to

mii = (EA — No)u" + (Nol2, — EARYu" + mPii". (9)

This is the final governing equation for longitudinal waves
propagating in 1D bar with initial stress. Similar wave equations
with higher order derivatives u’" and ii" have been derived from
various motivations (see e.g. [34,35]). For microstructure materials,
a wave equation with Ng=0 has been obtained by means of the
variational principle [36].

Next, let us consider the effect of initial stress on longitudinal
waves. To this end, u is assumed to be u = Uei®™*~ 9 where k is
the wavenumber and w is the circular frequency, and then the gov-
erning Eq. (9) becomes

m(1 + B k*)w?* = EA(1 + )k — Nok* (1 + B k). (10)

Solving the resulting frequency equation, the phase wave speed,
v=w/k, can be found to be

21,2
e EA(1+1251<2)7&. an
m(1+1[k) m

Obviously, longitudinal waves are present for initial tensile
loading Ny < 0. On the contrary, for an initial compressive loading,
i.e., No > 0, waves may not exist unless the compressive loading Ny
is sufficiently small, satisfying
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