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a b s t r a c t

In the problem of thick-walled cylinders of functionally graded materials (FGMs), this paper chooses the
displacement function as unknown in the governing equation. The Young’s modulus is arbitrary and con-
stant Poisson’s ratio is assumed. Two fundamental solutions are defined from a numerical solution under
two particular initial boundary conditions. In addition, the transmission matrix M is defined for the single
layer case. The matrix relates the values of radical stress and displacement at the initial point to those at
the end point of the layer. By using the matrix, the boundary value problem can be solved as well. After
considering the continuation condition along the layers, the method of transmission matrix can also be
used to the multiply-layered cylinder. The method of transmission matrix can also be used to solve the
problem of the thick-walled sphere. A lot of numerical examples are presented.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) possess some particular
advantages. For example, the materials can be used in a high tem-
perature environment. Therefore, analysis for components made of
FGMs got much attention by many researchers. The problems for
FGM vessels under higher inner pressure is a particular problem
in this field. The usage of FGMs in pressurized vessels can consid-
erably change the stress distribution along the section. However,
FGMs are inhomogeneous material. Therefore, the liner theory of
elasticity is no longer useful for the study of FGM component.

For the cylinder of homogenous property, the problem has been
solved completely [1,2]. Many papers studied the problem of FGM
cylinder [3–11]. In order to get an analytical solution for the prob-
lem, most researchers assumed the Young’s elastic modulus in the
form of power law or exponential function. In Ref. [11], authors
proposed a solution for an arbitrary response of the Young’s mod-
ulus. In the suggested method, one still needs to solve a Fredholm
integral equation numerically. Using the stress function as un-
known, the boundary value problem for a FGM cylinder was solved
by a superposition of two initial boundary value problems [10].
Plastic limit angular velocity of rotating hollow cylinders made of
the von Mises materials with nonlinear isotropic hardening is
investigated numerically and analytically [12].

From above-mentioned results we see that it is necessary to de-
velop some numerical procedures for the case of an arbitrary

Young’s modulus. In this paper, similar studies were devoted to
the pressurized sphere made of FGMs [13,14].

This paper starts on a study of single layer cylinder of FGM. The
Young’s modulus is assumed to be an arbitrary function with re-
spect to ‘‘r”, and the Poisson’s ratio takes a constant value. A trans-
mission matrix M is defined for the single layer case ða 6 r 6 bÞ.
The matrix relates the values of radical stress and displacement
at the initial point ðr ¼ aÞ to those at the end point ðr ¼ bÞ. The ma-
trix is evaluated on a numerical solution of two fundamental solu-
tions. The matrix is an inherent property of the cylinder, which
only depends on the geometry and elastic response of the cylinder
and has no relation with imposed boundary conditions. The bound-
ary value problem can be easily solved by using the transmission
matrix. In addition, the method of transmission matrix is also a
powerful tool to solve the problem of multiply-layered cylinder
of FGM. Similarly, the transmission matrix method can also be
used to the problem of pressurized thick-walled sphere.

In literature, there are two ways for the choice of the unknown
function in the ordinary differential equation of FGM cylinder.
Among them, one is the stress function and the other is the dis-
placement function.

It is valuable to develop different methods to solve the same or
similar problems for FGM cylinder. This can provide a deeper
understanding for the problem. In literatures, some researchers de-
voted their effort to obtain a closed form solution for FGM cylinder.
Therefore, those researchers might choose the better one between
two methods, or the stress function and the displacement function
methods, to reach their goal. In this paper, a numerical integration
method based on the displacement function is suggested. This
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adoption provides a variety of solution. A lot of numerical exam-
ples are carried out in the present study, and the influences of
the elastic response to the stress distribution on the section are
studied in detail.

2. Boundary value problem for single layer cylinder of FGMs
with general elastic response

In the history of elasticity there are two ways for the solution of
the boundary value problem [1]. Among them, one is based on the
stress function as unknown function, and the other is based on the
displacement. A similar situation happens in the elastic analysis of
the cylinder of FGMs with general elastic response.

For solving the boundary value problem of a thick-walled cylin-
der made of FGMs with general elastic response, an ordinary differ-
ential equation is derived below in which the displacement is
taken as unknown function. The concept of transmission matrix
is introduced, which is a powerful tool to solve the problem. Based
on the transmission matrix, the problem for multiply-layered cyl-
inder can also be solved. Many numerical examples and computed
results are provided.

2.1. Formulation of ordinary differential equation based on the
displacement function for a thick-walled cylinder made of FGMs

A long cylinder with inner radius ‘‘a” and outer radius ‘‘b” is
investigated (Fig. 1). The cylinder is assumed under some traction
or displacement boundary value conditions at the inner boundary
ðr ¼ aÞ and outer boundary ðr ¼ bÞ. The problem can be studied in
the polar coordinates ðr; hÞ.

The displacement in the r-direction is denoted by ‘‘u”. Two
strain components can be expressed as [1]

er ¼
du
dr
; eh ¼

u
r

ðwith u ¼ ehrÞ ð1Þ

In the present study, the Young’s modulus EðrÞ is an arbitrary func-
tion, and the Poisson’s ratio takes a constant value m ¼ 0:3. In the
plane strain case, the stress–strain relation takes the form

er ¼
1� m2

EðrÞ rr �
m

1� m
rh

� �
ð2Þ

eh ¼
1� m2

EðrÞ rh �
m

1� m
rr

� �
ð3Þ

From Eqs. (1)–(3), the stress components can be expressed as

rr ¼
EðrÞð1� mÞ
ð1þ mÞð1� 2mÞ

du
dr
þ m

1� m
u
r

� �
ð4Þ

rh ¼
EðrÞð1� mÞ
ð1þ mÞð1� 2mÞ

u
r
þ m

1� m
du
dr

� �
ð5Þ

In the symmetrical deformation case, the equilibrium equation for
the stress components rr and rh takes the form

drr

dr
þ rr � rh

r
¼ 0 ð6Þ

Substituting Eqs. (4) and (5) into Eq. (6) yields

d2u

dr2 þ
1
r

du
dr
� u

r2 þ
du
dr
þ m

1� m
u
r

� �
1

EðrÞ
dEðrÞ

dr
¼ 0 ðor KðuðrÞÞ ¼ 0Þ

ð7Þ

The problem is studied within the range a 6 r 6 b. In the analysis,
the following notations are used

rr;a ¼ rr jr¼a; ua ¼ ujr¼a ð8Þ
rr;b ¼ rr jr¼b; ub ¼ ujr¼b ð9Þ

In Eqs. (8) and (9), rr;a; rr;b denote the stress rr at r ¼ a or r ¼ b,
and ua; ub denote the displacement ‘‘u” at r ¼ a or r ¼ b,
respectively.

For a single layer cylinder case, there are four possibilities to
formulate the boundary problems. They are as follows

rr;a ¼ f1; rr;b ¼ f2 ð10aÞ

rr;a ¼ f1; ub ¼ g2 ð10bÞ

ua ¼ g1; rr;b ¼ f2 ð10cÞ

ua ¼ g1; ub ¼ g2 ð10dÞ

where f1; f 2; g1 and g2 are values given beforehand.
Clearly, once a solution for the displacement ‘‘u” is obtained,

from Eqs. (1)–(5), the components er ; e#; rr and rh can be ob-
tained accordingly.

2.2. Formulation of the transmission matrix in the case of single layer
cylinder

Physically, if the two initial values for rr;a and ua are assumed at
r ¼ a, we have definite values for rr;b and ub at r ¼ b. The relation
between ðrr;a; uaÞ and ðrr;b; ubÞ can be expressed through a ma-
trix, which is called the transmission matrix M hereafter. The intro-
duced matrix M is used not only to the single layer case but also to
the multiply-layered case. In the following analysis, a technique for
finding the matrix M will be introduced.

In the analysis, two fundamental functions s1ðrÞ and s2ðrÞ are
introduced, which are defined by

Kðs1ðrÞÞ ¼ 0; s1jr¼a ¼ 1;
ds1

dr

����
r¼a

¼ 0;

ðthe first fundamental functionÞ ð11Þ

Kðs2ðrÞÞ ¼ 0; s2jr¼a ¼ 0;
ds2

dr

����
r¼a

¼ 1;

ðthe second fundamental functionÞ ð12Þ

In Eqs. (11) and (12), K is a differential operator acting upon the
displacement function, which was indicated in detail by Eq. (7).

It is assumed that the studied solution for u(r) can be expressed
as

uðrÞ ¼ c1s1ðrÞ þ c2s2ðrÞ ð13Þ

From Eqs. (4), (11), (12) and (13), we have

rr;a ¼ c1
EðaÞð1� mÞ
ð1þ mÞð1� 2mÞ

m
1� m

s1

r
þ ds1

dr

� �
r¼a

þ c2
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� m
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r
þ ds2

dr

� �
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m
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a
þ c2

� �
ð14Þ

ua ¼ c1s1ðrÞjr¼a þ c2s2ðrÞjr¼a ¼ c1 ð15Þ
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Fig. 1. Two typical boundary conditions: (a) rr;a ¼ �qo at r ¼ a;rr;b ¼ 0 at r ¼ b, (b)
rr;a ¼ �qo at r ¼ a; ub ¼ 0 at r ¼ b.
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