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a b s t r a c t

A three-dimensional cellular automata model is developed for the description of the relevant metallur-
gical mechanisms occurring in the annealing stage of dual-phase steels: ferrite recrystallisation, pearl-
ite-to-austenite and ferrite-to-austenite transformation on heating and austenite-to-ferrite
transformation on cooling. Based on the local grain-boundary and interface velocity, the latter controlled
by both interface mobility and carbon diffusivity, the model is able to simulate the microstructure devel-
opment throughout the annealing stage. The model also provides information on the carbon gradient in
austenite at the end of the cycle, which is relevant for the prediction of martensite formation during the
subsequent quenching. The simulated structure thus provides a realistic representation of many micro-
structural aspects.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Due to the combination of high strength and good formability
dual-phase (DP) steels are increasingly popular in the automotive
industry. DP-steel is often produced by intercritical annealing of
cold rolled strip. The structure of the steel at the beginning of
the annealing process usually is a deformed ferrite/pearlite mix-
ture. Upon heating to the intercritical annealing temperature the
ferrite recrystallises. Depending on the strain energy in the de-
formed ferrite grains and on the heating rate, recrystallisation of
ferrite can evolve to a significant degree before the pearlite, P,
and ferrite, a, start to transform to austenite, c. During the isother-
mal holding (generally not longer than a few minutes) a two-phase
microstructure of ferrite and austenite is obtained. At the end of
the isothermal holding period there can be a short period of slow
cooling before the final quench. In this slow-cooling period (typical
cooling rates between 1 and 20 K/s) part of the austenite trans-
forms back to ferrite. In the subsequent quench any remaining aus-
tenite is expected to transform to martensite, resulting in the
characteristic ferrite/martensite dual-phase steel microstructure.

The final microstructure will have a pronounced effect on the
mechanical properties of the steel. The transformation processes

occurring during the annealing cycle, i.e. ferrite recrystallisation,
pearlite-to-austenite, ferrite-to-austenite, austenite-to-ferrite and
austenite-to-martensite phase transformations, have an influence
on the final microstructure. In the literature a number of different
models are available for all the mentioned transformation pro-
cesses ranging from simple (empirical) Johnson–Mehl–Avrami–
Kolmogorov (JMAK) [1–5] to sophisticated phase-field models
[6–11]. With phase-field-modelling detailed microstructure
descriptions can be obtained. Unfortunately, phase-field modelling
is associated with a high computational cost, especially for three-
dimensional systems. Multiple JMAK models for the different
transformations coupled together can provide a process model that
is much faster to calculate [12,13]; however the microstructure
description of these models is limited to phase fractions and aver-
age grain sizes.

The physical basis for JMAK models is formed by descriptions of
the nucleation and growth behaviour of grains, i.e. by combining a
nucleation-rate equation with a growth-rate equation, phase frac-
tions can be obtained by correcting for impingement [14]. When
the growth-rate equation is set to be dependent on the solute-ele-
ment diffusion in a grid microstructure, descriptions similar to
those from phase-field modelling can be obtained [15,16]. In this
type of computer models nucleation and growth are described
per grain and no local information from the grid is used in the cal-
culation of the growth rate of a grain. By including local informa-
tion from the grid in the growth model of the grains a type of
model is obtained which is probably best described as a Cellular
Automata (CA) model. An important advantage of a CA-model is
the option to start from any realistic microstructure; this is an
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essential feature for the microstructure simulation of the DP
annealing cycle, since aspects of the initial microstructure are
maintained during intercritical annealing.

In this work a CA-model will be presented that describes all
transformation processes in the DP-steel annealing cycle. In the
CA-model growth is primarily described per grain but where pos-
sible local information of the situation at the interface is also used
in the growth sub-models. By following this grain-based formalism
a highly efficient process model is obtained that can handle three-
dimensional systems within a reasonable simulation time, while
maintaining a satisfactorily accurate description of all transforma-
tion processes involved. Such a model inevitably contains a num-
ber of assumptions and simplifications. In the presentation of the
different model components the assumptions and simplifications
will be discussed. After definition of the simulation settings, the
capabilities of the CA-model are demonstrated for a (model) Fe–
C–Mn steel.

2. Theory

2.1. Cellular automata model

In the CA-model used in the present work the simulated poly-
crystalline system is discretised in a three-dimensional grid of cu-
bic cells of dimension d. Each cell in this system has 26
neighbouring cells, at distances d;

ffiffiffi
2
p

d;
ffiffiffi
3
p

d. Periodic boundary
conditions are applied. While in typical CA-models the state of
each cell depends on the state of the neighbouring cells through
particular transformation rules, the present model works differ-
ently: the transformation takes place at grain-boundary cells
according to the sub-models described later in this section.

At each time, t, each cell has the following properties:

1. The grain to which the cell belongs. The setting of this property
for each cell of the system identifies univocally the grain-bound-
ary cells, which have neighbours that belong to a different grain.
Note that each cell belongs to only one grain and therefore this
is a sharp-interface model.

2. The growth length, li
cell, for each grain-boundary cell, i. This

property is updated every time step, Dt, by Euler time integra-
tion of the grain-boundary velocity, i.e.

li
cellðt þ DtÞ ¼ li

cellðtÞ þ v i
cellDt; ð1Þ

where the velocity v i
cell is equal to the grain-boundary velocity, v,

which is calculated according to the relevant sub-model (see
Sections 2.2–2.4).
When the growth length of a cell, li

cell, has reached the grid spac-
ing, d, the nearest neighbour cells are transformed into interface
cells and their growth length starts to evolve according to Eq. (1).
Next-nearest neighbours are transformed when li

cell exceeds the
face diagonal of the cubic cell, i.e. li

cell P d
ffiffiffi
2
p

, and the last neigh-
bours are transformed when li

cell exceeds the body diagonal of the
cubic cell, i.e. li

cell P d
ffiffiffi
3
p

. When all its neighbour cells have been
transformed, a cell is no longer a grain-boundary cell and its
growth length li

cell looses its meaning. When cells of different grains
grow simultaneously into a shared neighbour cell, the first cell that
reaches the critical length determines to which grain the shared
neighbour cell transforms.

To ensure that every change in the grain volume and surface
area is directly reflected in the transformation kinetics, the maxi-
mum time step size, Dt, is subjected to the criterion

Dt <
ffiffiffi
3
p
�

ffiffiffi
2
p� �

d=v ð2Þ

in the present cubic cell configuration. On the basis of Eq. (2) the
time step is selected dynamically during a simulation.

Eq. (2) shows that the maximum allowed time step depends on
the grid spacing (d) used in the simulation. The optimal value for
the grid spacing depends on the details of the simulation system.
If a large grid spacing relative to the grain size is chosen, the vol-
ume and surface area of the grains will occasionally change
abruptly (because they are discretised in cells). Especially for the
austenite-to-ferrite transformation it is important that grain vol-
ume and surface area changes are accurately described as they play
an important role in the transformation kinetics (see Section 2.4.2).
This usually limits the grid spacing to a few tenths of a micron. Of
course smaller grid sizes increase the computation time.

As stated above, the cells in the CA-model form grains. Grains
have a number of properties (besides the collection of cells that be-
long to them):

(i) The phase of the grain (ferrite, austenite or pearlite).
(ii) Strain energy.

(iii) Average carbon concentration.
(iv) Carbon concentration at the interface.

For all growing grains the grain-boundary velocity, v, is deter-
mined according to the classical equation

v ¼ MDG ð3Þ

where M is the interface mobility and DG the driving force for the
transformation [17].

For the different metallurgical processes (ferrite recrystallisa-
tion and phase transformations) that occur during the DP-steel
annealing cycle different sub-models are used for the calculation
of the driving force DG in Eq. (3). These processes, which will be
simulated by the CA-model and will control the growth of the
interface cells through Eq. (1), are presented in Sections 2.2–2.5.

2.2. Ferrite recrystallisation

2.2.1. Nucleation
In the present application of the model the nucleation of recrys-

tallised grains is described as site-saturation. Site-saturation can be
interpreted as a collection of pre-existing nuclei that start to grow
when a certain temperature is reached. In the CA-model this is
implemented as a nucleation density nRX and a nucleation temper-
ature Tnucl

RX , which are input parameters. The number of nuclei
formed, NRX, is given by

NRX ¼ nRXVa; ð4Þ

where Va is the volume of non-recrystallised ferrite. In the present
application of the model the number of nuclei is calculated for each
ferrite grain, i, and the total number of recrystallised nuclei is given
by NRX ¼

P
inRXVi

a, where Vi
a is the volume of the single grain i. This

approach allows relating the nucleus density to the local strain en-
ergy. In the present simulation, the positions of the nuclei in the
grains are chosen randomly. It is possible in the model to limit
nucleation at specific sites like grain-boundary cells.

2.2.2. Growth
During ferrite recrystallisation the grain-boundary velocity, v,

can be described by

v ¼ Maa
0 exp �Qaa

g =RT
� �

DGRX ð5Þ

where Maa
0 and Qaa

g are respectively the pre-exponential factor and
the activation energy for the grain-boundary mobility and DGRX is
the strain energy of the non-recrystallised grains. The newly nucle-
ated grain is assumed to have zero strain energy. The growth veloc-
ity depends on the strain energy of the neighbouring grains and is
calculated locally. If all deformed grains have the same strain
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