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a b s t r a c t

Ductile damage is a consequence of large strains more or less localized inside bands. Taking into account
damage in constitutive behaviour of metallic materials is necessary to model various engineering prob-
lems involved in forming processes (stamping, punching, shearing. . .). Damage can be described at mac-
roscopic level with continuum mechanics theories but introducing microstructural features can lead to
more accurate predictions. In the present study, two polycrystalline plasticity models including damage
effects in the framework of scale transition methods are investigated. These models are based on different
approaches with direct application to duplex stainless steel. The first one is a variant of the Lipinski–Ber-
veiller model in which ductile damage effects have been introduced. The second one is a generalized
Cailletaud model taking into account ductile damage. Because of the microstructural complexity of the
chosen materials, some particular developments of the micro-mechanical approaches are considered.
Moreover, continuous damage mechanics is used at grains scale including its coupling with plastic or
elastic–plastic flow. The modelling is justified from previous experimental results obtained by neutrons
diffraction on duplex stainless steels. The developed models allow then deducing from the grains behav-
iour the macroscopic behaviour of the aggregate with damage effects.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, forming and manufacturing processes of metallic
materials are currently simulated numerically using FEA and
assuming small elastic strains but large inelastic (plastic or visco-
plastic) deformations. In order to improve the productivity of
material models used with FEA, it is necessary to provide accurate
constitutive equations, accounting for different kinds of hardenings
weakly or strongly coupled with ductile damage. Such a methodol-
ogy is now classical using various constitutive equations [1–4]. Due
to more or less localized but large inelastic strains, the influence of
ductile damage on material behaviour is required in the modelling
from their microstructural features. This can be done using either a
macroscopic approach where various state variables associated to
the mechanical phenomena under concern are introduced at each
quadrature point taken as homogenous RVE; or a micro-mechani-
cal approach of polycrystalline inelasticity where the microstruc-
tural composition of the RVE has to be accounted for.

The present paper is specifically dedicated to the comparison
between damage modelling from two scale transition methods in
the framework of polycrystalline plasticity. Only ductile damage

occurring in polycrystalline metals under large plastic deformation
is considered in this work. The modelling of ductile damage and its
effects on the mechanical behaviour of metallic materials can be
achieved following two basic approaches. The Gurson based ap-
proach simply modifies the yield criterion by the voids volume
fraction [5–7]. The CDM approach is based on thermodynamics
of irreversible processes [8–10] with state variables and state
and dissipation potentials. It can be directly adapted to the grains
scale. Eventually, the easiest method to develop a multiscale mod-
elling scheme including damage effect consists in using existing
micro-mechanical models applied to plasticity [11–13] and then
incorporating damage [1,2,4,8–10,12]. Among these useful models
one can find the Cailletaud model [14] and the Berveiller–Zaoui
model [15]. In the present work, both variant models are consid-
ered assuming large plastic deformation and applied to DSS, while
neglecting any phase transformation phenomena, but taking into
account ductile damage occurrence at appropriated scales.
Although presented in small deformation to emphasize our dam-
age coupling, the large deformation approach is eventually consid-
ered through frame indifference principle for each model. The first
one is discussed down to numerical aspects, whereas the second
one is studied only from a theoretical point of view. This second
model is introduced to improve the first one because of effective
difficulties in the modelling of damage. The present paper targets
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advantages of both approaches for theoretical comparison, but not
necessary numerical ones. The present work is wholly based on
CDM framework as described in details in [16,17], whatever the
considered model.

The studied material is an UR45N austeno-ferritic stainless
steel, containing approximately 50% austenite and 50% ferrite. Its
chemical composition was given in a previous publication [18]. It
was obtained by continuous casting, and then hot rolled down to
15 mm sheet thickness. It was then annealed during 1000 h at a
temperature of 400 �C and next cooled in air. The characteristic
microstructure of such steel consists of austenitic elongated is-
lands along the rolling direction and embedded in a ferritic matrix.
EBSD method showed that all crystallites of ferritic phase have al-
most the same orientation {0 0 1}h1 1 0i, while austenitic islands
are divided into smaller grains with different orientations of which
the majority is concentrated around {0 0 1}h1 0 0i and
{0 1 1}h2 1 �1i, see in Fig. 1 [19].

2. Variant of the Lipinski–Berveiller model

2.1. Damage at mesoscopic scale

A possible formulation for elasto-plastic models was initially
proposed by Berveiller and Zaoui [15] and generalized by Lipinski
and Berveiller [20,21]. Indeed, the Berveiller–Zaoui model is writ-
ten in small strains and tangent modulus tensor, corresponding
to the Hill’s self-consistent equations, is supposed constant and
isotropic. Whereas the Lipinski–Berveiller self-consistent scheme
is the application of the original Hill’s self-consistent idea at finite
elasto-plastic strains in the mathematical framework proposed by
Iwakuma and Nemat Nasser and using kinematic integral equation
to determine the strain rate concentration tensors. So that such
model describes the behaviour of polycrystalline materials for arbi-
trary large strains taking into account rotations of crystal lattice
[20,21]. The latter model was used by many authors to predict
elasto-plastic or elasto-viscoplastic deformation and texture evolu-
tion in polycrystalline materials [3,21–24]. It was also applied for
interpretation of diffraction experiments for two-phase duplex
steels [18]. Three scales are thus considered namely: macroscopic
(aggregate), mesoscopic (grain) and microscopic (slip system)
ones. In the present paper, this model has been modified in order
to take into account ductile damage thanks to the total energy
equivalence assumption [1] used at mesoscopic scale. It leads to
introduce the effective total strain tensor ~eg and the effective stress
tensor ~rg for each grain (g) of the aggregate, whatever the phase
(austenite or ferrite quoted indifferently as ‘‘g’’):

~eg ¼ eg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� dg

p
and ~rg ¼ rgffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� dg
p ð1Þ

The damage parameter dg is taken as a scalar measure of ductile
damage at mesoscopic scale (grain scale). In grains of the equivalent
fictive undamaged RVE, the stress – total strain relation can be de-
scribed using rates formulation as:

_~r
g
¼ lg : _~e

g
() _rg ¼ ~l

g
: _eg ð2Þ

where lg and ~l
g

are the tangent modulus tensors defined for undam-
aged and damaged grains, respectively. Substituting Eq. (1) in Eq.
(2), the stress – total strain relation at the grain scale in each phase
(‘‘g’’) is then given by:

_rg ¼ ð1� dgÞlg : _eg � 1
2

lg : eg þ rg

1� dg

� �
_dg ð3Þ

Assuming that dg can be function of the total strain and stress ten-
sors dg ¼ f ðeg ;rgÞ, we obtain directly:

_rg ¼ ð1� dgÞlg � 1
2

lg : eg þ rg

1� dg

� �
� @dg

@eg

� �
: _eg � 1

2
lg : eg þ rg

1� dg

� �
@dg

@rg
: _rg

� �
ð4Þ

While comparing with Eq. (2), the elasto-plastic tangent modulus
for damaged grains ~l

g
can be then explicitly written, indifferently

in ferritic phase or austenitic phase:

~l
g
¼ 1þ 1

2
lg : eg þ rg

1� dg

� �
� @dg

@rg

� ��1

: ð1� dgÞlg � 1
2

lg : eg þ rg

1� dg

� �
� @dg

@eg

� �
ð5Þ

where 1 is the unit fourth rank tensor.

2.2. Damage at microscopic scale

At microscopic scale, the yielding criterion describing plasticity
has also to be modified to include damage in each phase, for exam-
ple with a classical linear relation:

f s
Linear ¼ ~ss

C � ðss
C0 þ

X
t

Hst~ctÞ 6 0 ð6Þ

where ss
C0 is the initial CRSS on the slip system ‘‘s’’, and Hst is the

hardening matrix [18] in the undamaged material. However, to de-
scribe an evolution of slip systems for non-linear behaviour, Voce
law [25] has been frequently used especially with self-consistent
calculations to interpret diffraction data (for examples see [26–
28]). According to this approach, the CRSS for a given slip system
is now related to plastic shear strain ~#g accumulated on all systems
in the considered grain ‘‘g’’ in each phase, i.e.:

Nomenclature

RVE representative volume element
DSS duplex stainless steel(s)
CDM continuous damage mechanics
FEA finite element analysis
CRSS critical resolved shear stress
ODF crystalline orientations distribution function
X is a scalar variable (with no line under the quantity X)
X is a second rank tensor (with one line under the quan-

tity X)
X is a fourth rank tensor (with two lines under the quan-

tity X)

A�B corresponds to a simple contraction operation between
two tensors A and B

A:B corresponds to a double contraction operation between
two tensors A and B

A � B corresponds to a tensorial product between two tensors
A and B

hXi are the Mc-Cauley brackets which means the positive
part of a scalar X

ðXÞT orðXÞT is the transpose of the quantity X (second or fourth
rank tensor)

kXk is the euclidean norm of a second rank tensor X
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