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The asymptotic expansion homogenisation (AEH) method can be used to solve problems involving phys-
ical phenomena on continuous media with periodic microstructures. In particular, the AEH is a useful
technique to study of the behaviour of structural components built with composite materials. The main
advantages of this approach lie on the fact that (i) it allows a significant reduction of the problem size and
(ii) it has the capability to characterise stress and deformation microfields. In fact, specific equations can
be developed to define these fields, in a process designated by localisation and not found on typical
homogenisation methods. In the AEH methodology, overall material properties can be derived from
the mechanical behaviour of selected periodic microscale representative volumes (also known as repre-
sentative unit-cells, RUC). Nevertheless, unit-cell based modelling requires the control of some parame-
ters, such as reinforcement volume fraction, geometry and distribution within the matrix material. The
need for variety and flexibility leads to the development of automatic geometry generation algorithms.
Additionally, the unstructured finite element meshes required by these RUC are usually non-periodic
and involve the control of specific periodic boundary conditions. This work presents some numerical pro-
cedures developed in order to support finite element AEH implementations, rendering them more effi-
cient and less user-dependent. The authors also present a numerical study of the influence of the
reinforcement volume fraction on the overall material properties for a metal matrix composite (MMC)
reinforced with spherical ceramic particles. A general multiscale application is shown, with both the

homogenisation and localisation procedures.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

When numerically simulating the behaviour of metal matrix
composite (MMC) materials reinforced with ceramic particles it
is often necessary to use non-structured finite element meshes.
The need for significant resources in terms of memory and CPU
time leads to the use of dedicated optimisation methodologies.
Numerical models that predict the behaviour of these materials
are developed with these methodologies. One of these methods
is the asymptotic expansion homogenisation (AEH). This method
is a powerful technique and has been widely used in modern engi-
neering applications, such as, for example, nanotechnologies [1,2],
smart composites modelling [3,4], and the modelling of thin net-
work structures [5].

Applying the AEH, overall material properties can be derived
from the mechanical behaviour of selected microscale representa-
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tive volumes (representative unit-cells, RUC). Nevertheless, unit-
cell based modelling requires the control of parameters such as
reinforcement volume fractions, shapes and distributions within
the matrix material. This leads to the development of automatic
geometry generation algorithms. Additionally, unstructured tetra-
hedral meshes required by these types of RUC involve the control
of specific periodic boundary conditions.

In the scope of this work, based on the mathematical method-
ology presented on part I of this work, a numerical simulation
model is developed for three-dimensional finite element analyses
(FEA) with asymptotic expansion homogenisation. Automatic rep-
resentative unit-cell generation procedures are also developed,
with control over relevant geometrical parameters. Additionally,
specific algorithms are implemented for the association of de-
grees of freedom, in order to enforce periodicity boundary condi-
tions over structured and unstructured finite element meshes.
Numerical simulations are performed in order to validate the
implemented procedures and to evaluate the influence of the
non-periodicity of finite element meshes on the overall AEH
results.
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Fig. 2. Finite element meshes: (a) unstructured tetrahedral and (b) structured
hexahedral meshes.
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Fig. 3. RUC periodicity: (a) original and (b) deformed geometries.
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2. Finite element method in AEH

2.1. Multiscale numerical equations — asymptotic expansion
homogenisation

The asymptotic expansion homogenisation method is used to
solve problems that involve physical phenomena on continuous
media with a periodic microstructure. AEH is a useful technique
to study the behaviour of structural components built with com-
posite materials. For the elasticity problem, the AEH is an exact
mathematical technique through which one can solve problems
associated with differential partial operators with high-frequency
periodic variations of its coefficients, solving a problem associated
with a differential operator with constant coefficients [6,7]. This is
called the homogenised elasticity problem. The coefficients of the
homogenised problem are determined from the solution of a prob-
lem defined on the microscale unit-cell, enforcing periodic con-
straints to its boundaries [8]. One of the main advantages of this
method lies on a significant reduction of the number of degrees
of freedom of the elasticity problem. In fact, this technique allows
the modelling of the microstructural details of the composite
material based on a single representative unit-cell. The macroscale
is modelled as an equivalent homogeneous body.

Another advantage of the asymptotic expansion homogenisa-
tion method is that it allows the characterisation of the microstruc-
tural strain and stress fields. Unlike other usual homogenisation
methods, the AEH approach explicitly defines equations for this
purpose. This process, designated by localisation, is essentially
the inverse of the homogenisation.

As previously shown on part I of this work, the microscale prob-
lem is solved in two main steps. The first is the calculation of the
corrector matrix (x), which contains the eigendeformations of the
representative periodic geometry [9]. Thus,
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Fig. 4. Node association schemes in RUC boundaries: (a) in corners, (b) in edges and (c) in faces.



Download English Version:

https://daneshyari.com/en/article/1562953

Download Persian Version:

https://daneshyari.com/article/1562953

Daneshyari.com


https://daneshyari.com/en/article/1562953
https://daneshyari.com/article/1562953
https://daneshyari.com

