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a b s t r a c t

This paper presents two procedures for the identification of material parameters, a genetic algorithm and
a gradient-based algorithm. These algorithms enable both the yield criterion and the work hardening
parameters to be identified. A hybrid algorithm is also used, which is a combination of the former two,
in such a way that the result of the genetic algorithm is considered as the initial values for the gradi-
ent-based algorithm. The objective of this approach is to improve the performance of the gradient-based
algorithm, which is strongly dependent on the initial set of results. The constitutive model used to com-
pare the three different optimization schemes uses the Barlat’91 yield criterion, an isotropic Voce type
law and a kinematic Lemaitre and Chaboche law, which is suitable for the case of aluminium alloys. In
order to analyse the effectiveness of this optimization procedure, numerical and experimental results
for an EN AW-5754 aluminium alloy are compared.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

The numerical simulation of sheet metal forming processes has
proven its efficiency and usefulness. In the last twenty years, con-
siderable efforts have been made to improve the numerical meth-
ods for solving non-linear problems arising from material
behaviour, geometry and friction. Moreover, by means of user-
friendly graphical interfaces and due to increasing computer
capacity, the use of numerical simulation to analyze the sheet
metal forming process has been promoted at an industrial scale.
Despite the advances in this domain, the final result of the simula-
tion of metal forming processes depends greatly on the limitations
of the constitutive material behaviour model, used in the simula-
tions [1,2]. In fact, various types of models can be used, according

to their ability to explain and/or predict the details of the plastic
behaviour during a given deformation process. Simple models of
isotropic hardening can give an acceptable estimate of the drawing
forces occurring during the process and are widely used in industry
[3]. However, more sophisticated models, involving for instance
non-linear kinematic hardening and more refined yield criteria
models, give improved evaluation of the evolution of every defor-
mation process [4–7]. Generally, these models have a large number
of parameters, which increases the amount and type of experimen-
tal tests necessary for their evaluation. Moreover, the results of the
parameter evaluation are often inconsistent [8–10].

The identification of the material parameters, for a given consti-
tutive model, can be seen as an inverse formulation. In this context,
the key idea is to simulate the performed experiment, trying to
adapt material parameters in order to numerically obtain the same
results as the experimental ones [11,12]. This approach consists of
an optimization problem where the objective function is to mini-
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mize the gap between the experimental and the numerical results.
The optimization variables are the material parameters that appear
in the constitutive model. To solve this problem one can use differ-
ent methods that can be divided mainly into three groups:

1. Derivative-free search algorithms.
2. Gradient-based algorithms.
3. Evolutionary algorithms.

The derivative-free algorithms, also called direct search algo-
rithms, are generally based on simple strategies and do not require
the calculation of derivatives. Their simplicity is their main attri-
bute. However, direct search algorithms undergo the problem of
converging to local minimums, and are also somehow user-depen-
dent. The convergence of these algorithms is very time-consuming
and involves the comparison of each trial solution with the best
previous solution. One can refer to several methods based on direct
search strategies namely: pattern search [13], Rosenbrock [14],
simplex [15] and Powell [16]. These methods remain popular be-
cause of their simplicity, flexibility and reliability.

The gradient-based algorithms usually converge quickly in the
vicinity of the solution, and are therefore very interesting in
terms of rapidity. However, they have some limitations, being
strongly dependent on user skills, due to the need to choose
the initial trial solutions. Also, they can easily fall to local mini-
mums, mainly when the procedure is applied to multi-objective
functions, as is the case with material parameter identification.
The requirement of derivative calculation makes theses methods
non-trivial to implement. One can mention a large number of
optimization gradient-based methods such as the Steepest Des-
cent Method, the Newton method or several Quasi-Newton Meth-
ods [17–20].

An evolutionary algorithm is a generic definition used to indi-
cate any population-based optimization algorithm that makes
use of some mechanism to improve the initial solutions. The trial
solutions to the optimization problem are individuals in a popu-
lation. Evolution of the population takes place after the repeated
application of the genetic operators (reproduction, mutation,
recombination, etc.). These algorithms have become very popular
in recent years, mainly because of the increase in computer cal-
culation speed that leads to optimized results in an acceptable
time. Moreover, it is generally believed that evolutionary algo-
rithms perform consistently well across all types of problems,
which is evidenced by their success in fields such as engineering,
art, biology, economics, genetics, robotics, social sciences and
others. Although they are robust methods, their convergence is
very time-consuming, and they must be considered as sub-opti-
mal algorithms, as for continuous variable optimization the glo-
bal minimum of the objective function is not guaranteed.
Anyway, local minima are generally avoided and the final solu-
tion is in the vicinity of the global minimum. Genetic algorithms
are the most popular type of evolutionary algorithms that make
use of biological evolutionary analogies to improve the initial
set of solutions.

In conclusion, these three types of approaches to variable opti-
mization can be used to solve the problem of determining the
material parameters of a given constitutive model. All the algo-
rithms have advantages and drawbacks. However, one can pro-
duce hybrid algorithms combining the advantages of each
approach, e.g. robustness of the genetic algorithm and perfor-
mance of the gradient-based algorithm. Generally speaking, if
the constitutive model is relatively simple e.g. isotropic harden-
ing described by a power law and an anisotropic Hill’48 [21]
yield criterion, the identification is relatively easy to perform,
whenever the available experimental data is sufficient. As the
complexity of constitutive models increases, identification be-

comes non-trivial, and generally demands user skills. To explore
and identify the problems and difficulties that can arise during
the parameter identification procedure, this paper makes use of
two different algorithms, a gradient-based and an evolutive algo-
rithm, to identify the material parameters of the constitutive
equations model in the case of a 1 mm thick sheet of EN AW-
5754-O aluminium alloy, used in the automotive industry. A set
of experimental results was obtained from tension and both
monotonic and Bauschinger shear tests. The Barlat’91 [22] yield
criterion is considered. A Voce type equation [23] with kinematic
hardening component described by the Lemaitre and Chaboche
law [24] is used.

The paper is structured as follows. In Section 2, the constitutive
equations are briefly illustrated. In Section 3 the parameter identi-
fication problem and the two algorithms used are presented. In
Section 4 the experimental tests are described. In Section 5 the re-
sults of the parameters identified are discussed. And Section 6
sums up the main conclusions of this work.

2. Constitutive equations

The YLD91 yield criterion was proposed by Barlat et al. [22,25]
and was written from previous isotropic criterion defined by Her-
shey and Hosford [26,27]. It can be written as follows:

/ ¼ jS1 � S2jm þ jS2 � S3jm þ jS3 � S1jm ¼ 2�rm ð1Þ

where S1, S2 and S3 are the principal values of the isotropic plastic
equivalent deviatoric stress tensor S, which is obtained from the
Cauchy stress tensor r by a linear transformation; m is an exponent
which can be considered equal to, respectively, 6 for BCC and 8 for
FCC materials [28] and �r is the equivalent stress. The linear trans-
formation used to calculate the isotropic plastic equivalent (IPE)
stress tensor S is

S ¼ L : r ð2Þ

where L is the linear transformation tensor, defined for orthotropy
[29] by

L ¼
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2
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ð3Þ

where c1, c2, c3, c4, c5 and c6 are the parameters that describe the
anisotropy. When all parameters ci (i = 1 to 6) are equal to one
and m = 2, the YLD91 criterion reduces to the von Mises yield crite-
rion. The parameters to be identified in this model are c1, c2, c3 and
c6. The parameters c4 and c5, the identification of which requires
shear tests to be performed in the sheet thickness, are kept constant
and equal to isotropic values (c4 = c5 = 1); this is because the exper-
imental database does not involve such strain paths. As above men-
tioned, an exponent value of m = 8 is used [28], which is coherent
with the behaviour of FCC materials such as aluminium alloys.

The yield surface is described by the equation:

U ¼ �r� Y ¼ 0 ð4Þ

where Y is the yield stress that takes as initial value Y0. The yield
stress evolution is given by the Voce law [23], defined as:

_Y ¼ CY ðYsat � YÞ_�ep ð5Þ

where _�ep is the equivalent plastic strain rate and CY and Ysat are
material parameters to be identified. This model is used in the sim-
ulation of materials whose behaviour presents saturated hardening.
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