Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier.com/locate/commatsci

Atomistic simulation on the structure and lattice vibration of RCo_2Al_8 (R = La, Ce and Pr)

Hui-Jun Tian^{a,b}, Ping Qian^{a,b,*}, Jiang Shen^a, Nan-Xian Chen^{a,c}

^a Institute of Applied Physics, Beijing University of Science and Technology, Beijing 100083, China
 ^b School of Physics, Beijing University of Chemical Technology, Beijing 100029, China
 ^c Department of Physics, Tsinghua University, Beijing 100084, China

ARTICLE INFO

Article history: Received 14 March 2008 Received in revised form 7 May 2008 Accepted 8 May 2008 Available online 20 June 2008

PACS: 34.20.Cf 63.20.Dj 61.43.Bn

Keywords: Lattice inversion Interatomic potentials Crystal structure Lattice dynamics

1. Introduction

The ternary compounds R-Co-Al, where R stands for a rare earth element or uranium have been widely studied for both fundamental and technological aspect of magnetism. The magnetic properties of these compounds were studied, revealing interesting behaviors. For examples, the RCoAl₄ compounds with R = Ce and Pr order antiferromagnetically at low temperature [1,2], whereas the $R_2Co_3Al_9$ with R = Gd and Tb order ferromagnetically with T_c above 100 K [3]. In theory, there are few works about rare-earth compounds with 4f electron. Chen et al. have performed an atomistic simulation on phase stability, site preference and lattice parameters for RFe_{12-x}T_x [4], RM_{13-x}T_x [5], R₂M_{17-x}T_x [6,7] and R₃Fe_{29-x}T_x [8,9] (R = rare earth metals; M = Fe, Co; T = transition metals), suggesting the validity of application of inverted pair potentials on structure simulation of such rare-earth compounds. In this work, the structural properties of RCo_2Al_8 (R = La, Ce and Pr) compounds are simulated by inverted interatomic pair potentials. Particularly, some lattice vibrational properties for these kinds of materials are

ABSTRACT

The structural properties of RCo_2Al_8 (R = La, Ce and Pr) compounds are simulated by using pair potentials based on *ab initio* method and lattice-inversion technique. The calculated lattice constants and atomic coordinates are found in good agreement with the experimental values. Further, some simple mechanical properties such as the elastic constants and bulk modulus are investigated for these materials. In particular, the phonon densities of states for RCo_2Al_8 are first evaluated. A qualitative analysis is carried out with the relevant potentials for the vibrational modes, which makes it possible to predict some properties related to lattice vibration.

© 2008 Elsevier B.V. All rights reserved.

evaluated, from which the Debye temperature are obtained. These are explorations for the structures of complex materials using the interatomic potentials.

2. Methodology

The atomistic simulation has been widely used in the investigation of the structures, defects and thermodynamic properties of various materials. One of the key problems in atomistic simulation method is the determination of the interatomic potentials. With the lattice inversion theorem developed by Chen [10,11], we can do without complicated fitting and parameter adjustment when obtaining the interatomic potentials.

2.1. Chen's lattice-inversion technique

The cohesive energy E(x) of a crystal can be expressed as a sum of interatomic pair potentials, i.e.

$$E(\mathbf{x}) = \frac{1}{2} \sum_{R_i \neq 0} \phi(R_i) = \frac{1}{2} \sum_{n=1}^{\infty} r(n) \phi[b(n)\mathbf{x}]$$
(1)

where x is the nearest-neighbor interatomic distance, r(n) the nthneighbor coordination number, b(n) the relative distance between

^{*} Corresponding author. Address: Institute of Applied Physics, Beijing University of Science and Technology, Beijing 100083, China. Tel./fax: +86 10 62322872. *E-mail address:* qianpinghu@sohu.com (P. Qian).

^{0927-0256/\$ -} see front matter \odot 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.commatsci.2008.05.008

Table 1 Part of Morse parameters of the conversed pair potentials

	R_0 (Å)	$D_0 (eV)$	γ
La-La	4.7585	0.2938	6.4607
Pr–Pr	4.2278	0.3099	7.2894
Al-Al	3.0059	0.4232	8.9191
Co-Co	2.7087	0.6766	8.9030
La-Al	3.6488	0.4617	8.8925
Pr–Al	3.5175	0.4771	8.8287
Ce-Co	3.1778	0.7099	9.4369
Co–Al	2.6970	0.6477	9.1129

Table 2 The atomic positions of PrCo₂Al₈

Atom	Site	In this work	Literature [12]
Pr (1)	4g	(0.3410, 0.3178, 0)	(0.3405, 0.3184, 0)
Co (1)	4g	(0.0341, 0.4063, 0)	(0.0347, 0.4058, 0)
Co (2)	4g	(0.1565, 0.0938, 0)	(0.1518, 0.0964, 0)
Al (1)	4h	(0.0271, 0.1301, 0.5002)	(0.0252, 0.1318, 1/2)
Al (2)	4h	(0.1596, 0.3795, 0.5002)	(0.1602, 0.3790, 1/2)
Al (3)	4h	(0.2410, 0.1717, 0.5002)	(0.2364, 0.1729, 1/2)
Al (4)	4h	(0.3286, 0.4881, 0.5002)	(0.3317, 0.4911, 1/2)
Al (5)	4h	(0.4518, 0.1790, 0.5002)	(0.4525, 0.1800, 1/2)
Al (6)	4g	(0.0969, 0.2508, 0)	(0.0959, 0.2531, 0)
Al (7)	4g	(0.3418, 0.0429, 0)	(0.3402, 0.0445, 0)
Al (8)	2d	(0, 0.5002, 0.5002)	(0, 1/2, 1/2)
Al (9)	2a	(0, 0, 0)	(0, 0, 0)

the origin and the *n*th set of lattice points and $\Phi(x)$ the pair-potential function. Then, the general equation for pair the potential $\Phi(x)$ can be expressed as

$$\Phi(\mathbf{x}) = 2\sum_{n=1}^{\infty} I(n)E[b(n)\mathbf{x}]$$
⁽²⁾

The coefficient I(n) can be obtained by

$$\sum_{b(n)|b(k)} I(n)r\left[b^{-1}\left[\frac{b(k)}{b(n)}\right]\right] = \delta_{k1}$$
(3)

I(n) is uniquely determined by the geometry of the crystal structure and is not related to the concrete element category. Then the interatomic pair potentials can be obtained from the known cohesive energy function E(x).

Table 3

Lattice parameters and cohesive energy of PrCo₂Al₈

Table 5			
Electic constants	 l	ناريان م مع	6

Elastic constants and bulk moduli for RCo	p_2Al_8 (R = La, Ce and Pr)

Compounds	Elastic constants C_{ij} (GPa)						Bulk modulus (GPa	
	C ₁₁	C ₁₂	C ₁₃	C ₃₃	C44	C ₆₆		
LaCo ₂ Al ₈	148	57	70	114	85	37	92	
CeCo ₂ Al ₈	146	61	73	109	85	36	93	
PrCo ₂ Al ₈	137	56	76	100	87	34	90	

2.2. Extraction and transferability of the pair potentials

In order to obtain the effective interatomic potentials with the lattice-inversion technique, a practical method of performing an ab initio calculation of the cohesion curve is needed. For this, the search and design of some simple structures which can be used to invert the necessary interatomic potentials are important for us. First, let us consider the structure of BCC Co in the B2 or CsCl structure with two simple cubic (SC) sublattices Co₁ and Co₂. Thus,

$$E(x) = E_{Co}^{\text{BCC}}(x) - E_{Co_{1}}^{\text{SC}}(x) - E_{Co_{2}}^{\text{SC}}(x)$$
$$= \sum_{i,j,k\neq 0}^{\infty} \Phi_{Co-Co}\left(\sqrt{\frac{4}{3}\left[\left(i - \frac{1}{2}\right)^{2} + \left(j - \frac{1}{2}\right)^{2} + \left(k - \frac{1}{2}\right)^{2}\right]\chi}\right)$$
(4)

Here x is the nearest-neighbor distance in the bcc structure, $E_{Co}(x)$ represents the total energy curve with the bcc structure, $E_{Co_1}(x)$ or $E_{Cop}(x)$ is the total energy function for the simple-cubic structure. Now, E(x) automatically becomes the cohesive energy function of one Co₁ atom with all the Co₂ atoms. Here, the Co₂ atoms constitute a simple-cubic structure, and only one Co₁ atom is located at the center of any cube. Then the pair potentials $\Phi_{Co-Co}(x)$ between identical atoms can be obtained directly by using Chen's lattice-inversion technique.

The *ab initio* calculation of the total energy curve related to Φ_{R-} $_{CO}(x)$ is very hard to perform. We find that the calculation for R₃Co with the L1₂ structure can be used to invert the pair potential Φ_{R-} $_{Co}(x)$. The total energy of R₃Co with the L1₂ structure is given by

$$E(x) = E_{R_3C_0}^{L_{1_2}}(x) - E_{C_0}^{sc}(x) - E_{R}'(x)$$
(5)

where $E_{Co}^{SC}(x)$ is attributed to the simple-cubic structure, in which all the atoms occupy the corner sites and $E'_{R}(x)$ is attributed to the atoms occupying the face-center sites. Thus, the pair poten-

Initial state			Final state				
a, b, c (Å) α , β , γ (deg) Cohesive energy (eV/atom) a ,		a, b, c (Å)	α, β, γ (deg)	Cohesive energy (eV/atom)			
6, 7, 8	90, 90, 90	126.2625	12.9036, 14.9140, 3.8786	90, 90, 90	-4.0627		
9, 9, 9	85, 75, 90	17.2515	12.9036, 14.9140, 3.8786	90, 90, 90	-4.0627		
10, 12, 9	80, 90, 85	1.8841	12.9036, 14.9140, 3.8786	90, 90, 90	-4.0627		
12, 14, 3	90, 120, 90	6.9838	12.9036, 14.9140, 3.8786	90, 90, 90	-4.0627		
16, 18, 20	90, 80, 90	-0.8049	12.9036, 14.9140, 3.8786	90, 90, 90	-4.0627		
12.9, 14.9, 3.87	80, 90, 120	-1.2508	12.9036, 14.9140, 3.8786	90, 90, 90	-4.0627		

Table 4

Comparison of related lattice constants before and after atomic random motion of 0.6 Å for RCo₂Al₈ (R = La, Ce and Pr)

	LaCo ₂ Al ₈			CeCo ₂ Al ₈			PrCo ₂ Al ₈		
	a (Å)	b (Å)	c (Å)	a (Å)	b (Å)	c (Å)	a (Å)	b (Å)	c (Å)
Before random motion After random motion of 0.6 Å Experimental [12]	12.9811 12.9811	14.6239 14.6239	4.0122 4.0122	12.8508 12.8508	14.5674 14.5674	3.9113 3.9113	12.9036 12.9036 12.4623	14.9140 14.9140 14.3700	3.8786 3.8786 4.0117

Download English Version:

https://daneshyari.com/en/article/1563240

Download Persian Version:

https://daneshyari.com/article/1563240

Daneshyari.com