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a b s t r a c t

The equivalent crystal theory method of Smith et al. [Phys. Rev. B 44 (1991) 6444] originally formulated
for fcc and bcc metals, and semiconductors, is here extended to hcp metals and applied to calculate sur-
face energies. The (0 0 1) surface energies obtained for 22 hcp metals are in good agreement with the
results of both experiment and ab initio calculations.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Surface energy is a physical property of great interest [1–18].
The energy of a free surface plays an important role in several
physical and chemical processes such as fracture, catalysis, etc.
Experimental measurements of the surface energy are more com-
monly found for polycrystalline materials, and are also usually
subject to errors due to surface-active contaminants and thus have
a degree of uncertainty. Early theoretical calculations were based
on perturbation theory [1] or non-perturbative variational method
[2]. In the last few years, there has been an increasing effort on
first-principles calculations [3–7], as well as in the area of semi-
empirical methods [8–16].

In general, semi-empirical approaches tackle the many-body
problem by determining a functional form for the cohesive en-
ergy based on some physical model. The functional form often
contains one or more parameters which are to be determined
by fitting to experimental properties. Once these parameters
have been determined, the functional form may then be used
to calculate various other properties, such as defect energies,
etc. While the various semi-empirical models have been impres-
sively successful in describing a wide variety of metallic proper-
ties, a significant short-coming is that the estimate of surface
energies from several of these semi-empirical models [8–15] is

considerably lower than experiment and first-principles results.
The reasons for this short-coming are not yet clear and current
research efforts are in the direction of formulating better semi-
empirical models.

A review of recent theoretical efforts dealing with the calcula-
tion of properties of materials using semi-empirical methods re-
veals that four methods are dominant: Finnis–Sinclair method
[8], embedded atom method (EAM) [9–14], effective medium the-
ory (EMT) [15], and equivalent crystal theory (ECT) [16,19–24]. The
ECT method has been used extensively for both face-centred cubic
(fcc) and body-centred cubic (bcc) metals [16,19–24] but has so far
not been applied to the hexagonal closed-packed (hcp) metals. The
purpose of this study is first, to extend the original ECT method
[19] to hcp metals and thereby fill out that gap in the literature,
and finally to use the method to study the surface energy problem
for these materials. This completes our initial objective of using the
ECT method to provide comprehensive surface energy results for
fcc [21], bcc [22] and hcp metals. Such extensive results obtained
with the same theoretical model, are useful to both theorists and
experimentalists.

The remainder of this paper is organized as follows. In Section 2,
we give a brief discussion of the ECT method and its appropriate
extension to hcp metals. In Section 3, we discuss the ECT method
of calculating the surface energies of hcp metals. The results of sur-
face energies for 22 hcp metals are reported in Section 4, along
with the results obtained by other workers. Concluding remarks
are given in Section 5.
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2. The ECT method

In this section a brief operational description of the ECT method
is given. Details of its derivation and the rationale behind its devel-
opment can be found in Ref. [19]. Equivalent crystal theory (ECT) is
based on an exact relationship between the total energy of the con-
stituent atoms in a solid and the atomic locations and it applies to
surfaces and defects in both simple and transition metals as well as
in covalent solids. Lattice defects and surface energies are deter-
mined via perturbation theory on a fictitious, equivalent single
crystal whose lattice constant is chosen to minimise the perturba-
tion. The energy of the equivalent crystal, as a function of its lattice
constant is given by a universal binding energy relation [25].

Let e be the total energy to form the defect or surface, then

e ¼
X

i

ei ð1Þ

where ei is the contribution from an atom i close to the defect or
surface. The linear independence attributed to the terms in Eq. (1)
is consistent with the limit of small perturbations which is assumed
in the formulation of the ECT. ECT is based on the concept that there
exist, for each atom i, a certain perfect, equivalent crystal with its
lattice parameter fixed at a value so that the energy of atom i in
the equivalent crystal is also ei. This equivalent crystal differs from
the ground-state crystal only in that its lattice constant may be dif-
ferent from the ground-state value. We compute ei via perturbation
theory, where the perturbation arises from the difference in the ion
core electronic potentials of the actual defect solid and those of the
effective bulk single crystal. The problem of finding ei, and hence e,
is reduced to finding for each atom an effective equivalent single
crystal and calculating the energy of the atom i in it. Many body
terms contribute to the energy of each atom in real systems. Hence,
ei is written as a sort of perturbation series of one-, two-, three-, and
four-body terms, each of which is obtained by considering a differ-
ent effective perfect equivalent single crystal.

In this approximation [19], ei takes the form:

ei¼DE F�½a�1ðiÞ�þ
X

j

F�½a�2ði; jÞ�þ
X

i;j

F�½a�3ði; j;kÞ�þ
X
p;q

F�½a�4ði;p;qÞ�
" #

ð2Þ

where DE is the equilibrium cohesive energy per atom of the actual
crystal, and F�½a�� is the simple analytic function

F�½a�� ¼ 1� ð1þ a�Þ expð�a�Þ ð3Þ

The first term in Eq. (2), F�½a�1ðiÞ�, contributes when average
neighbour distances are altered via defect or surface formation. It
can be thought of as representing local atom density changes.
The second term, F�½a�2ði; jÞ�, is a two-body term which accounts
for the increase in energy when nearest neighbour bonds are com-
pressed below their equilibrium value. The third term, F�½a�3ði; j; kÞ�,
is a three-body term that accounts for the increase in energy which
arises when bond angles deviate from their equilibrium values in
the undistorted single crystal. Finally, the fourth term,
F�½a�4ði; p; qÞ�, describes face diagonal anisotropies. A detailed
description, for each lattice type, of the structural effect associated
with these four terms can be found in Ref. [19].

Now Eq. (2) can be re-written, in an obvious notation, as

ei ¼ DE
X4

k¼1

F�½a�kðiÞ� ð4Þ

where the scaled lattice constant a� is given in terms of the equiv-
alent crystal nearest-neighbour distance Rec as

a� ¼ ðRec=c � rWSEÞ=l ð5Þ

Eqs. (1)–(3), (and) (5) correspond respectively to Eqs. (5) and
(20)-(22) of Smith et al. (1991). However, the fact that the hcp
structure has two lattice constants which convention denotes as
a and c makes it mandatory for us to relabel c in Eq. (5) as c1. Eq.
(5) thus becomes

a� ¼ ðRec=c1 � rWSEÞ=l ð6Þ

Let rWS be the Wigner–Seitz radius in the actual crystal with the
equilibrium value rWSE, then c1 is the ratio between the nearest-
neighbour distance and rWSE in the undistorted actual crystal. For
the hcp crystal, rWSE ¼ ð3

ffiffiffi
3
p

a2c=16pÞ1=3, and the scaling length l
takes the form

l ¼ ðDE=12pBrWSEÞ1=2 ð7Þ

where B is the equilibrium bulk modulus of the actual crystal.
By intuition rather than a rigorous proof, our work hangs on the

assumption, [26,27], that the universal binding energy curve of
Rose et al. [25] describes the hydrostatic compression or expansion
of a pure hcp crystal by keeping the ratio c/a constant and using
the Wigner–Seitz radius as a reference instead of the lattice con-
stant. Throughout this work it is assumed that the c=a ratio for
the equivalent hcp crystal is the same as that for the actual crystal.
Then a knowledge of a�ðiÞ for the equivalent crystal implies imme-
diately a knowledge of c�ðiÞ, and in what follows we shall be focus-
sing attention on how to determine a�ðiÞ. Eq. (2) shows clearly that
each atom i in the defect region has associated with it four differ-
ent types of equivalent crystals with lattice parameters a�1, a�2, a�3,
and a�4.

The value of a�, the lattice parameter of the first equivalent crys-
tal associated with atom i, chosen so that the perturbation (the dif-
ference in potentials between the solid containing the defect and
its bulk, ground-state equivalent crystal) vanishes. Within the
frame work of ECT, this requirement translates into the following
equation for the determination of the nearest neighbour distance
of the first equivalent crystal, Rec:

N1Rp
ec expð�aRecÞ þ N2ðC2RecÞp exp �ðaþ 1

k
ÞC2Rec

� �

�
X

defect NN

Rp
j expð�RjÞ �

X
defect NNN

Rp
j exp �ðaþ 1

k
ÞRj

� �
¼ 0 ð8Þ

where

Rj ¼ ~Rj

��� � ~Ri

��� ð9Þ

Eq. (8) is the same as Eq. (26) of Ref. [19] and it is just the math-
ematical representation for local atom density changes in the de-
fect region. Once Rec has been determined from Eq. (8) then a�i ðiÞ
can be determined from Eq. (6). In Eq. (8), Rj is the distance be-
tween the atom located at position ~Rj and a reference atom located
at position ~Ri; N1 and N2 are, respectively, the number of nearest
neighbours (NN) and next-nearest neighbours (NNN) in the equiv-
alent crystal; and finally, C2 is the ratio between the NNN distance
and NN distance in the undistorted actual crystal.

The electronic screening length k in Eq. (8) is chosen, after
Smith et al. [19], to be of the form

k ¼ 2:81l ð10Þ

and the ECT parameter p is defined by

p ¼ 2n� 2 ð11Þ

where n is the atom principle quantum number. The two summa-
tions in Eq. (8) are over the actual defect crystal, the first over near-
est neighbours and the second over next-nearest neighbours to
atom i.
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