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The recognition that gene expression can be substantially

stochastic poses the question of how cells respond to dynamic

environments using biochemistry that itself fluctuates. The

study of cellular decision-making aims to solve this puzzle by

focusing on quantitative understanding of the variation seen

across isogenic populations in response to extracellular

change. This behaviour is complex, and a theoretical

framework within which to embed experimental results is

needed. Here we review current approaches, with an emphasis

on information theory, sequential data processing, and

optimality arguments. We conclude by highlighting some

limitations of these techniques and the importance of

connecting both theory and experiment to measures of fitness.
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Introduction
Life for single cells is stochastic [1]. Cells sense fluctuating

signals with biochemical networks that are themselves

stochastic and history-dependent [2], and yet living

organisms are able to flourish in nearly all environments.

Understanding how cells prosper despite stochasticity and

environmental variability is the focus of a relatively new

area of systems biology, that of cellular decision-making

[3,4]. By a cellular decision we mean the process by which a

cell makes a ‘choice’ of phenotype from a range of possible

phenotypes in response to or in anticipation of extracellular

change. Such choices could include new gene expression,

changes in cell morphology, intracellular re-arrangements,

movement, or the option not to change phenotype at all.

In addition to the stochasticity of signal transduction, cells

locally sense signals that fluctuate both in time and across

space, whereas often it is the successful identification of

broader environmental changes that is important in

enabling an effective response [5]. Even bacteria appear

to be able to solve this kind of inference problem, using

local signals to identify, for example, that they are in the

human gut and thereby anticipate likely future events

[6,7].

Here we review the theoretical approaches developed so

far to understand cellular decision-making. Motivated by

the surge of interest in biochemical stochasticity generated

by the theoretical work of McAdams and Arkin in 1997 [8],

we ask if theory is now poised to have a similar effect on the

experimental study of decision-making in single cells.

Dose–response and information theory
Most theorists have focused on applying ideas from infor-

mation theory, often inspired by neuroscience [9]. In

systems biology, the experimental confirmation that gene

expression is stochastic [10,11] and the related discovery

that genetically identical cells can vary significantly in their

response to the same stimulus [12–14] implies that dose–
response, or ‘input–output’, relationships are also often

substantially stochastic. Information theory, through

mutual information, provides an objective means to

quantify the influence of this stochasticity [15].

Mutual information is perhaps the most principled

measure of statistical dependence between two stochastic

variables, such as the signal and response of a biochemical

network [16–19]. We discuss its interpretation as a

measure of information in Boxes 1 and 2. Mutual infor-

mation can be related to the quality of the optimal

prediction, or inference, of the signal from the response

(Box 1 and Figure 1), does not require knowledge of

transduction mechanisms, and is invariant to nonlinear,

one-to-one transformations of either the signal or response.

It does, however, require measurement of the probability

distribution of the signal and the response. Collecting

sufficient data to accurately estimate probability distri-

butions and mutual information can be difficult, and for

most organisms we know little about the distribution of

signals experienced in the wild. An approach often taken in

an attempt to circumvent this lack of knowledge is to

calculate the information capacity (Box 2), which is the

maximum value of the mutual information over all

possible, plausible signal distributions.

Recently, the development of fluorescent reporters and

microfluidics have enabled unprecedented characterization
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of the responses of individual cells [21–23], and experimen-

tal measurements of mutual information and information

capacity for biochemical signalling systems are now appear-

ing [24,25��,26��,27,28�]. A particularly close connection

between mutual information and the ‘function’ of a signal-

ling system is made by Bialek and colleagues in their study

of development in the fruit fly [24,26��,29]. Considering the

gap gene network early in development, they showed that

the positional information, the mutual information between

gap gene expression and the position of a nucleus, is close to

the amount needed for each nucleus to identify its physical

position along the anterior–posterior axis of the embryo

[26��]. This system has the advantage that a uniform prior or

‘input’distribution for thepositionof thenucleus isanatural

choice. Three recent studies of signal transduction in

mammalian cells report values of the mutual information

of approximately 1 bit or less for a single cell under con-

ditions of constant stimulation and using simultaneous

measurement of a single stimulus and output (the studies,

though, use different inputs) [25��,27,28�]. Does this value

necessarily mean that the cell can therefore discriminate

without error two states of the signal but not more, which

would suggest the prevalence of binary decisions by cells?

We believe not, for the reasons explained in the first point of

Box 2. Cellular inferences of a signal must often be imper-

fect, and a mutual information of 1 bit is in general a

quantification of the ability to infer the signal, albeit with

uncertainty, from the output.

More experimentally and analytically accessible altern-

atives to mutual information have also been proposed,

including local, variance-based measures [31] and a lower

bound for information capacity based on the linear cor-

relation coefficient [32]. The ‘fidelity’ is the proportion of

the variance in the response that is generated by the

signal rather than by, for example, biochemical stochas-

ticity, and provides a lower bound on information capacity

that accounts for non-linearity in the response [33�].
Using this approach, a study of osmosensing in yeast

showed that the majority of variation in expression of a

gene induced by a stress-activated kinase (up to 80%) can

be due to variation in the osmotic environment [33�].
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Box 1 Interpreting mutual information

Mutual information can be interpreted in several different ways.

Mutual information is the difference between the entropy of the input and the entropy of the input given the output. For discrete systems, the

entropy of a random variable is a measure of uncertainty, and mutual information therefore quantifies the reduction in uncertainty about the input

gained from measuring the output. For example, if the entropy of the input is, say, 3 bits, a signalling output with a mutual information of 2 bits

implies less impeded ‘information flow’ than an output with a mutual information of 1 bit. For continuous systems, entropy as a measure of

uncertainty is more problematic. We would expect the extent of our uncertainty about a random variable not to change if the variable is transformed

by a one-to-one mapping, but the entropy of a continuous variable generally does change under such transformations [20].

An alternative interpretation of mutual information, applicable to both discrete and continuous systems, comes from decision theory (summarized

in Box 3). Suppose a cell must infer the state of a signal, S, from the output, Z, of a signal transduction mechanism. In general, the inference made

about the signal takes the form of a probability distribution (over the possible signal values) with density function, say, q. To measure the quality of

this inference, we need a means of evaluating or scoring q. If z is the measured value of the output and the inference about the signal is q(s0, z), a

function of the possible signal states s0, one possible scoring function is log q(s0 = s, z), where s is the true state of the signal. This scoring function

rewards inferences q that attach higher values to s0 = s. Let the true distribution of the signal be p(s0) (the signal s is a sample from p) and let this

distribution also be the prior distribution for any inference. Then the increase in the score that results from the inference q, when the true state of the

signal happens to be s, is measured by

log qðs0 ¼ s; zÞ � log pðs0 ¼ sÞ:
When z is measured, the expected value of this increase (averaging over all signal states) is

E½scorejz� ¼
Z

pðsjzÞlog qðs; zÞds �
Z

pðsjzÞlog pðsÞds;

and averaging further over all possible values of the output, z, we have

E½score� ¼
Z

pðzÞ pðsjzÞlog qðs; zÞdsdz �
Z

pðsÞlog pðsÞds:

Following decision theory (Box 3), we then ask which inference function q maximizes this expectation.

The inference that maximizes the expected score is posterior Bayesian inference, q(s, z) = p(sjz) = p(z, s)/p(z) [20]. The expected score then

becomes

E½score�Bayes ¼
Z

pðzÞ
Z

pðsjzÞlog pðsjzÞdsdz �
Z

pðsÞlog pðsÞds ¼ IðS; ZÞ

which, by definition, is the mutual information. The mutual information therefore quantifies the ability, on average, to infer a given signal, S, from the

output, Z, of a signal transduction mechanism, if we can assume that the prior distribution for the inference equals the actual distribution of the signal

(Figure 1). For a given signal distribution, one transduction mechanism allows better inference than another if and only if it has higher mutual

information. We note that different scoring functions can also result in Bayesian inference being optimal, but give an expected score that is not the

mutual information. If additional requirements such as smoothness and locality are, however, imposed on the scoring function then the logarithmic

function is the only possible one [20].
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