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Abstract

This paper is concerned with the problem of a Griffith crack in bonded functionally graded piezoelectric materials under the anti-
plane shear loading. To make the analysis tractable, the properties of the functionally graded piezoelectric materials, such as elastic
modulus, piezoelectric constant and dielectric constant, are assumed in exponential forms and vary along the crack direction. The crack
surface condition is assumed to be electrically impermeable or permeable. Integral transform and dislocation density functions are
employed to reduce the problem to the solution of a system of singular integral equations. The effects of the loading parameter k, material
constants and the geometry parameters on the stress intensity factor, the energy release ratio and the energy density factor are studied.
� 2008 Published by Elsevier B.V.

Keywords: Functionally graded piezoelectric materials; Impermeable; Permeable; Singular integral equation

1. Introduction

It is well known that piezoelectric materials produce an
electric field when deformed and undergo deformation
when subjected to an electric field. In piezoelectric materi-
als and devices, the electrical and the mechanical loads are
applied to the piezoelectric components which give rise to
high stresses and can lead to their failure. A lengthy litera-
ture has now developed for the fracture mechanics of pie-
zoelectric materials [1–6]. To improve the reliability and
durability problems arising largely from high residual and
thermal stress, poor interfacial bonding strength, function-
ally graded piezoelectric materials (FGPMs) as the new
generation of composites have been developed. Chen
et al. [7] considered the dynamic anti-plane problem for a
functionally graded piezoelectric strip (FGPs) containing
a central crack vertical to the boundary. Both the imperme-

able and permeable cases are considered. They applied inte-
gral transform and dislocation density functions to reduce
the problem to solving Cauchy singular integral equations.
Ueda [8] obtained the solutions for a crack in FGPs
bonded to two elastic surface layers. He used the energy
density factors to predict the fracture behavior of the struc-
ture. Chue and Ou [9] investigated mode III crack prob-
lems for two bonded functionally graded piezoelectric
materials. The problem of a crack located in a functionally
gradient piezoelectric interlayer is considered by Hu et al.
[10]. Ma et al. [11] investigated the electro-elastic behavior
of a Griffith crack in a functionally graded piezoelectric
strip. Yong and Zhou [12] studied the anti-plane shear
problem for a cracked functionally graded piezoelectric
layer bonded to two piezoelectric half-planes.

In this present paper, the anti-plane shear problem for
bonded functionally graded piezoelectric materials is inves-
tigated. The crack surface condition is assumed to be elec-
trically impermeable or permeable. The standard Fourier
transform technique is adopted to solve the governing
equations for the functionally graded piezoelectric materi-
als. By satisfying the boundary conditions and the interface
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continuity conditions, the problem is reduced to two singu-
lar integral equations. The solution has been obtained
numerically. The effects of the loading parameter k, mate-
rial constants and the geometry parameters on the stress
intensity factor, the energy release ratio and the energy
density factor are studied.

2. Formulation of the problem

Consider a crack in a FGPs of width h bonded to a dis-
similar functionally graded piezoelectric material (FGPM).
The crack is perpendicular to the interface and lies in
a < x < b as shown in Fig. 1. The crack length and the x-
coordinate of the crack center are defined as 2a0 = b � a
and c = (b + a)/2, respectively.

All materials exhibit transversely isotropic behavior and
are poled in the z-direction. An anti-plane shear loading
and an electric displacement are applied on the crack sur-
faces. The constitutive equations can be written as

sxzk ¼ c44kðxÞ
owk

ox
þ e15kðxÞ

ouk

ox
;

syzk ¼ c44kðxÞ
owk

oy
þ e15kðxÞ

ouk

oy
;

Dxk ¼ e15kðxÞ
owk

ox
� e11kðxÞ

ouk

ox
;

Dyk ¼ e15kðxÞ
owk

oy
� e11kðxÞ

ouk

oy
;

ð1Þ

where sizk, wk, Dik and /k (i = x, y, k = 1, 2) are the shear
stresses, anti-plane displacements, in-plane electrical dis-
placements and electric potentials, respectively, while sub-
scripts k = 1,2 refer to the FGPs 1 and the FGPM 2.
The variations of material constants c44k(x), e15k(x) and
e11k(x) called the shear modulus, piezoelectric constants,
and dielectric constants, respectively, are assumed in the
following exponential forms;

c441ðxÞ ¼ c0ebx; e151ðxÞ ¼ e0ebx; e111ðxÞ ¼ e0ebx;

c442ðxÞ ¼ c0ecx; e152ðxÞ ¼ e0ecx; e112ðxÞ ¼ e0ecx;
ð2Þ

where b and c are called nonhomogeneous parameters. The
constants c0, e0, e0 are the material properties at x = 0.

The static equilibrium equation and Maxwell’s equation
under electro-static condition are given as

osxzk

ox
þ osyzk

oy
¼ 0;

oDxk

ox
þ oDyk

oy
¼ 0; k ¼ 1; 2: ð3Þ

Substituting Eq. (1) into Eq. (3) and using the relation
(2), we obtain the following equations:

c0r2w1 þ e1r2u1 þ b c0
ow1

ox þ e1
ou1

ox

� �
¼ 0;

e0r2w1 � e0r2u1 þ b e0
ow1

ox � e0
ou1

ox

� �
¼ 0;

(
ð4Þ

c0r2w2 þ e1r2u2 þ c c0
ow2

ox þ e1
ou2

ox

� �
¼ 0;

e0r2w2 � e0r2u2 þ c e0
ow2

ox � e0
ou2

ox

� �
¼ 0;

(
ð5Þ

where $2 = o2/ ox2 + o2/oy2 is the two-dimensional La-
place operator.

By separating the homogeneous solution through an
appropriate superposition, the problem may be reduced
to a perturbation solution in which self-equilibration crack
surface tractions are the only nonzero external loads. For
the problem described in Fig. 1, the mixed boundary con-
ditions are

w1ð0; yÞ ¼ w2ð0; yÞ; u1ð0; yÞ ¼ u2ð0; yÞ;
sxz1ð0; yÞ ¼ sxz2ð0; yÞ; Dx1ð0; yÞ ¼ Dx2ð0; yÞ;
sxz1ðh; yÞ ¼ 0; Dx1ðh; yÞ ¼ 0;

w1ðx; 0Þ ¼ 0; u1ðx; 0Þ ¼ 0; 0 6 x < a; b < x 6 h;

w2ðx; 0Þ ¼ 0; u2ðx; 0Þ ¼ 0; �1 6 x < 0;

Dy1ðx; 0Þ ¼ DðxÞ; syz1ðx; 0Þ ¼ sðxÞ; a < x < b

ð6Þ

for the impermeable case, and

w1ð0; yÞ ¼ w2ð0; yÞ; u1ð0; yÞ ¼ u2ð0; yÞ;
sxz1ð0; yÞ ¼ sxz2ð0; yÞ; Dx1ð0; yÞ ¼ Dx2ð0; yÞ;
sxz1ðh; yÞ ¼ 0; Dx1ðh; yÞ ¼ 0;

w1ðx; 0Þ ¼ 0; 0 6 x < a; b < x 6 h;

u1ðx; 0Þ ¼ 0; 0 6 x < h;

w2ðx; 0Þ ¼ u2ðx; 0Þ ¼ 0; �1 6 x < 0;

Dy1ðx; 0Þ ¼ Dcðx; 0Þ ¼ DðxÞ;
syz1ðx; 0Þ ¼ sðxÞ; a < x < b

ð7Þ

for the permeable case, where Dc(x, 0) denotes the electric
displacement of the space of the crack itself.

3. Singular integral equations

Firstly, we proceed with the electrically impermeable
case. By using Fourier transform method, we can obtain

w1ðx; yÞ ¼ 1
2p

R1
�1 A1ðaÞ expðm1yÞe�iaxda

þ 2
p

R1
0
½C1ðaÞ expðn1xÞ

þ½C2ðaÞ expðn2xÞ sinðayÞda;

u1ðx; yÞ ¼ 1
2p

R1
�1 B1ðaÞ expðm1yÞe�iaxda

þ 2
p

R1
0
½D1ðaÞ expðn1xÞ

þ½D2ðaÞ expðn2xÞ sinðayÞda;

8>>>>>>>><
>>>>>>>>:

ð8Þ

w2ðx; yÞ ¼ 2
p

R1
0

E2ðaÞ expðpxÞ sinðayÞdx;

u2ðx; yÞ ¼ 2
p

R1
0

F 2ðaÞ expðpxÞ sinðayÞdx;

(
ð9Þ

Fig. 1. Geometry of the crack problem.
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