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It is well-known that biological systems have the capacity to change their inner structure and shape for
an optimized load transfer. This paper deals with the development of a multiphase model to describe the
growth and remodeling phenomenon in biological systems in order to learn more about the biological
optimization mechanisms. A continuum triphasic model (i.e., a solid having interstitial space filled with
water containing nutrients) based on the multiphase Theory of Porous Media (TPM) is proposed to pro-
vide a thermodynamically consistent description of the growth and remodeling phenomenon. The con-
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1. Introduction

Living tissue consists of different phases and components in
solutions. Even in the case that all interactions between these
ingredients are known, and that is by far not the case, the solution
of the coupled system of equation is not feasible. From this we di-
vide the tissue into three different main groups; a solid phase, a
fluid phase and a nutrient phase. All existing phases and compo-
nents are subgroups of the defined main groups. Although the divi-
sion is coarse, the model allows a deeper understanding in the
functionality of the tissue, especially in contrast to a one-compo-
nent approach. Fist of all, the apparent viscoelasticity of tissue is
a combination of a fluid flow-dependent and a fluid flow-indepen-
dent mechanism, see i.e., DiSilvestro and Suh [12], and that is obvi-
ously not describable using a one-component approach. Secondly,
the remodeling and growth processes underly the restriction of
mass transfer and phase transition. It is impossible to balance
the mass exchange and control the phase transition by using an
open system approach with a one-component material. Although
the proposed three phase model is far from capturing all the
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mechanisms that occur during the phase transition, it provides a
more detailed insight into the functionality of living tissue.

In general, growth and remodeling in living tissue are continu-
ous processes and the results of a time dependent phase-conver-
sion between tissue cells and nutrients, by which the nutrients
themselves can be transported through the tissue. Overall, we con-
sider that biological tissues consist mostly of multi-component
materials, frequently exhibiting an anisotropic internal structure
plus reaction to changing load cases with internal biological and/
or chemical activities.

Growth processes in living tissues are driven by mechanical,
chemical, genetic, metabolic, and hormonal influences. Due to
the lack of detailed knowledge and specific parameters with which
to quantify all these influences, a holistic numerical simulation
cannot currently be provided. However, the capability of tissue to
remodel its structure and density due to a changing stress state
has been well-known for over a century. The precondition for tis-
sue growth is the existence of growth material like nutrients.
Therefore, a triphasic calculation concept for the description of
stress and nutrient induced growth based on the well established
Theory of Porous Media will be presented in this paper.

In terms of comprehensive overviews of the experimental find-
ings of the growth phenomenon, the reader refers to, e.g., Fung
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[16,17] and Taber [26]. An overview of different models for the
description of growth phenomena can be found in Ricken et al.
[23]. For one-component approaches, the latest findings on
mechanical regulation of morphogenesis are presented in Taber
[27]. Fundamentals on the Theory of Porous Media can be found
in Biot [2-4], Bowen [10,9], Ehlers [13,14], de Boer [8] or Bluhm [6].

A question get to be answered is the determination of the right
mechanical stimulus on the growth. Proper candidates are strain or
strain state. The purpose of the present study is to explore how
growth reacts on different stimuli. Therefore, we present three dif-
ferent numerical examples where we compare the influence of the
mechanical stimuli on the growth mechanism.

2. Basic model and assumptions

In the developed model we apply the aforementioned Theory of
Porous Media (TPM) which is composed of the classical Mixture The-
ory and the concept of volume fraction. In the following section, the
basics of this theory will be sketched shortly and not completely. For
a deeper introduction we refer to e.g., de Boer [8] or Ehlers [14].

The examined porous body ¢ = > ¢*, « € {S = Solid, L = Liquid,
N =Nutrients}, consists of a porous solid phase ¢° which is
saturated by a fluid. The fluid itself is composed of ¢ (liquid)
and ¢N (nutrients), see Fig. 1. The bulk material is made up of
the three components, where the volume fractions n* refer the vol-
ume elements dv* of the individual constituents ¢* to the bulk vol-
ume element dv with
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where X is the position vector of the spatial point x in the actual
placement and ¢ is the time. The volume fractions n* in (1); meet
the volume fraction condition (1), for k constituents ¢*. Further-
more, the partial density p* = n*p*® of the constituent ¢ is related
to the real density of the materials p*® involved via the volume frac-
tions n*, see (1),.

The saturated porous solid will be described as an immiscible
mixture of all constituents ¢* with particles X,. Consequently,
we introduce independent Lagrangian motion functions X = j,(X,,t)
and X, = yx,'(x,t), deformation gradients F, = (0X)/(0X,,) = Grad,
and Jacobian J, = det F, for each constituent.

The local statements of the balance equations of mass are given
for the constituents ¢* by
(p*); + p*divx; = p*, (2)
and the local statements of the balance equations of momentum

read as follows
divT* + p*(b — X)) +p* — X, = 0. (3)

In (2) and (3), ‘div’ denotes the spatial divergence operator, p* rep-
resents the mass supply between the phases which must conform to
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T* is the partial Cauchy stress tensor, p* b specifies the volume
force and p* describes the interaction forces of momentum of the
constituents ¢* which are restricted to

pP+p-+p"=o. (5)

In the further description, the system is investigated under the con-
dition of a materially incompressible mixture-body

(Ps=0, (p*). =0, (P™)y=0, (6)

which leads us to the conclusion that the volumetric deformations
are only a result of the change in the porosity, i.e., from the volume
fraction n°. In this approach, energy transfer will be neglected be-
tween all phases as well as accelerations (X, = 0).

3. Constitutive modelling

For the proposed three phase model the overall entropy
inequality, enlarged by the material time derivative of the satura-
tion condition and the balance equations of mass, both multiplied
with the corresponding Lagrange multiplier, has been elaborated
on in Ricken and Bluhm [20,21]. From that, we obtain necessary
and sufficient conditions for the unrestricted validity of the second
law of thermodynamics. The following set of constitutive relation
is suggested based on this thermodynamic consistent framework.

3.1. Stress

The constitutive relations for the partial Cauchy stress tensors
are proposed with
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where Té is the effective stress, see e.g., Bishop [5] or Skempton
[24], TF is the fluid stress tensor and 4 denotes the fluid pressure.
For the formulation of the anisotropic constitutive relations we
use the concept of integrity-bases which allows a coordinate-
invariant formulation, see, e.g., Spencer [25], Boehler [7], Betten
[1] or Zheng and Spencer [28,29]. In this model we restrict our-
selves to a transversely isotropic material response and use the
stored energy function presented in Ricken et al. [23]. In the
end, this leads to an additive decomposition of the solid Helm-
holtz free energy function into an isotropic part, ¥, and a trans-
versely isotropic part, z//fi. ie.,
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Fig. 1. Homogenization.
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