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Abstract

The unsteady flow in a porous medium of an incompressible non-Newtonian viscoelastic fluid between two parallel horizontal
non-conducting porous plates is studied with heat transfer. A sudden uniform and constant pressure gradient and uniform suction
and injection through the surface of the plates are applied. The two plates are kept at different but constant temperatures, while the Joule
and viscous dissipations are taken into consideration. Numerical solutions for the governing momentum and energy equations are
obtained using finite difference approximations. The effect of the porosity of the medium, the parameter describing the non-Newtonian
behavior, and the velocity of suction and injection on both the velocity and temperature distributions is examined.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The flow of a viscous fluid between two parallel plates
has applications in many devices, such as magnetohydro-
dynamic (MHD) power generators, MHD pumps, acceler-
ators, aerodynamics heating, electrostatic precipitation,
polymer technology, petroleum industry, purification of
molten metals from non-metallic inclusions and fluid
droplets-sprays. The flow between parallel plates of a New-
tonian fluid with heat transfer, subjected to different phys-
ical effects, have been studied by many authors [1–10].
These results are important for the design of the duct wall
and the cooling arrangements. The rectangular channel
problem has later been extended also to fluids obeying
non-Newtonian constitutive equations. The flow of a visco-

elastic fluid has attracted the attention of many authors
[11–15] due to its important industrial applications [12].

In the present work, the flow between parallel plates in a
porous medium of a non-Newtonian viscoelastic fluid is
studied with heat transfer in the presence of a constant
pressure gradient. The flow is subjected to a uniform suc-
tion from above and a uniform injection from below. The
two plates are kept at two different but constant tempera-
tures. The flow in the porous medium deals with the anal-
ysis in which the differential equation governing the fluid
motion is based on Darcy’s law which accounts for the
drag exerted by the porous medium [16–18]. The viscous
dissipation is taken into consideration in the energy equa-
tion. The governing momentum and energy equations are
solved numerically using the finite difference approxima-
tions. The inclusion of the porosity effect, the non-Newto-
nian fluid characteristics as well as the velocity of suction
and injection leads to some interesting effects, on both
the velocity and temperature fields.
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2. Formulation of the problem

The fluid is assumed to be incompressible, viscoelastic
and flows between two infinite horizontal parallel plates
located at the y = ±h planes and extends from x = �1
to 1 and from z = �1 to 1. The upper and lower plates
are kept at two constant temperatures T2 and T1, respec-
tively, with T2 > T1. The flow is driven by a uniform and
constant pressure gradient dP/dx in the x-direction, and
a uniform suction from the above and injection from below
which are applied at t = 0. The flow is through a porous
medium where the Darcy model is assumed [18]. The plates
are assumed to be infinite in the x- and z-directions which
makes the physical quantities to not change in these direc-
tions. Thus, the velocity vector of the fluid, in general, is
given by:

~vðy; tÞ ¼ uðy; tÞ~iþ v0
~j

It is because of the conservation of mass, i.e., div~v ¼ 0 and
due to the uniform suction the velocity component v(y, t) is
assumed to have a constant value v0.

The fluid motion starts from rest at t = 0, i.e., u = 0 for
t 6 0. The no-slip condition at the plates implies that u = 0
at y = ±h. It is also assumed that the initial temperature of
the fluid is T1, thus the initial and boundary conditions of
temperature are T = T1 at t = 0, T = T1, at y = �h, t > 0
and T = T2, at y = h, t > 0. The fluid motion is governed
by the momentum equations [19]:
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where q is the density of the fluid, r is the electric conduc-
tivity of the fluid, �K is the Darcy permeability [16–18], the
second term in the right-hand side represents the porosity
force, and sxy is the component of the shear stress of the
viscoelastic fluid given, respectively, as [10]:
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where l is the coefficient of viscosity and a is the modulus
of rigidity. In the limit a tends to infinity or at steady state,
the fluid behaves like a viscous fluid without elasticity.
Solving Eq. (2) for sxy in terms of the velocity component
u, we obtain
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where the term ð1=a2Þ o
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, which is propor-

tional to (1/a2), have been neglected. Substituting Eq. (3)
in the momentum Eq. (1) yields
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The temperature distribution is governed by the energy
equation [19]:
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where cp and k are, respectively, the specific heat capacity
at constant pressure and the thermal conductivity of the
fluid. The second term on the right-hand side represents
the viscous dissipation. Eqs. (4) and (5) can be made
dimensionless by introducing the following dimensionless
variables:

ŷ ¼ y
h
; t̂ ¼ lt

h2q
; û ¼ qhu

l
; p ¼ Pqh2

l2
; bT ¼ T � T 1

T 2 � T 1

:

We also define the following dimensionless parameters:

S ¼ qhv0

l
; the suction parameter;

M ¼ h2=�K is the porosity parameter;

Pr ¼ lcp

k
; the Prandtl number;

Ec ¼
l2

q2h2cpðT 2 � T 1Þ
; the Eckert number;

K ¼ l2

qah2
; the viscoelastic parameter;

In terms of these dimensionless quantities, Eqs. (4) and (5)
may be written, after dropping all hats for convenience, as:
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The initial and boundary conditions for the velocity and
temperature in the dimensionless form are written as:

uðy; 0Þ ¼ 0; uð�1; tÞ ¼ uð1; tÞ ¼ 0; ð8Þ
T ðy; 0Þ ¼ 0; T ð�1; tÞ ¼ 0; T ð1; tÞ ¼ 1: ð9Þ

Eqs. (6) and (7) represent a system of partial differential
equations which is solved numerically under the initial and
boundary conditions (8) and (9), using the finite difference
approximation. The Crank–Nicolson implicit method [17]
is used at two successive time levels. Finite difference equa-
tions relating the variables are obtained by writing the
equations at the mid point of the computational cell and
then replacing the different terms by their second order
central difference approximation in the y-direction. The
diffusion terms are replaced by the average of the central
differences at two successive time-levels. Finally, the result-
ing block tridiagonal system is solved using the generalized
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