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We construct an approximate analytic expression for the growth of the neck between two sintering
roughened crystals in contact with a melt. The result combines recent work on early phase sintering
[R.S. Farr, M.J. Izzard, Phys. Rev. E 77 (2008) 041608], and a numerical method presented here, based
on Legendre polynomials. The expression gives an estimate which covers all times from very early to near
equilibrium, and includes the effect of a grain boundary between the two crystals. The predictions are
then compared to experiments on sintering of ice crystals in a sucrose solution.
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1. Introduction and the equations of surface evolution

When a crystal is allowed to come into equilibrium against a
melt, then it will eventually reach the Wulff shape, which can be
obtained by the following construction [1]: let the free energy
per unit area of a plane surface of the crystal (in contact with the
melt) be given by y (n), where n is a unit vector normal to the sur-
face, then we define a set of points p (n)  ny (n), where the con-
stant of proportionality sets the size of the crystal. We define the
set of planes through the set of points p (n), each perpendicular
to n, and then the Wulff shape is the inner envelope of all these
planes.

As seen most clearly in the terrace-ledge-kink model [2,3], one
expects the surface free energy y (n) to have a cusp for planes ori-
ented close to a crystallographic direction (so called vicinal planes).
From the Wulff construction, this leads to the equilibrium crystal
shape having facets, which are molecularly flat, save for isolated
surface vacancies and molecular islands [4]. However, at a particular
temperature, the free energy cost for the formation of molecular is-
lands vanishes, as does the cusp in the surface free energy. The crys-
tal surface becomes rough on a molecular scale, but smooth and
curved on a macroscopic scale. This ‘roughening transition’ is differ-
ent for different crystallographic symmetry directions: for example,
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inice, the basal direction remains faceted up until melting, while the
prism planes roughen at a temperature around 257-260 K, when
against water under pressure [5] or fructose solutions [6].

When roughened portions of two crystals (each in contact with
a melt) are brought into gentle contact at constant temperature,
they will begin to sinter, forming a neck. If there is an orientational
misalignment between the two crystal lattices (which is the case in
general), then the neck will also include a grain boundary. Where
this grain boundary meets the crystal/melt interface, there will lo-
cally be a notch [7] with a dihedral angle 6, given from simple force
balance by

2yc0s(00/2) = gy (1)

where 7 is the (approximately isotropic) surface free energy per unit
area of the crystals against the melt, and y,, that of the grain bound-
ary (which will be a function of the orientational mismatch).

During this process, and subsequently, the evolution of the
shapes of the crystals is driven by the fact that a molecule at a
curved surface has a chemical potential u which depends on the
mean curvature k. In linearized form, the well-known Gibbs-
Thomson relation between the two quantities is

U=y + K, (2)

where o is the chemical potential for a molecule at a flat surface,
Q, is the molecular volume, and « is positive for a convex crystal
surface.
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Molecules therefore have a tendency to leave regions of high
positive mean curvature, where their chemical potential is rela-
tively high, and to attach to regions of lower or negative (i.e., con-
cave) mean curvature. To do so, they may diffuse through either
the melt, the crystal lattice (by movement of vacancies), or along
the crystal surface [7]. In vapor-phase sintering, diffusion along
the crystal surface is often the dominant path, because the concen-
tration of molecules in the vapor is low, as is the concentration and
mobility of vacancies in the crystal [8,7].

For liquid phase sintering, the concentration of the relevant
molecules in the bulk of the melt may be comparable to that at
the crystal surface, and therefore the much larger cross sectional
area available for diffusion in the bulk will tend to make this the
dominant channel for diffusive transport.

Assuming that bulk diffusion limited re-crystallization is the
dominant mode of neck growth, then the concentration of diffusing
species in the melt will be governed by a (usually non-linear) diffu-
sion equation. To proceed, we make three important assumptions:

First, that thermal diffusion is much faster than mass diffusion
(so that the temperature remains approximately constant and uni-
form). This is the usual case for liquids, where the ratio of diffusiv-
ities is typically around 103 [9].

Second, that the concentration difference induced by the sur-
face curvature is small enough that the non-linearity in the diffu-
sion equation is negligible. We see from the diffusivity data in
Fig. 1 of Ref. [10] that for cold sucrose solutions (which is the focus
of the present paper), a 1% change in sucrose concentration can
lead to a change in sucrose self diffusivity of 5-10%. However,
using Eq. (5) and the calculations from Section 4 below, we see that
moving from a flat ice crystal surface to one with a radius of curva-
ture of 0.1 pm corresponds (at a temperature of 262 K) to a change
in sucrose concentration of around 0.1%. This second approxima-
tion is therefore seen to be reasonably accurate for cold sucrose/
ice systems studied with a light microscope.

Third, we assume that the transients of the diffusion equation
have died out, which can be justified once the relevant equations
have been constructed, and is discussed below in more detail in
the argument leading up to Eq. (21).

Under these circumstances, the volume fraction ¢(r) at position
r in the melt of the type of molecules which can form the crystal is
governed by Laplace’s equation

V¢ =0. 3)

Furthermore, the growth rate of the crystal in a direction normal to
its surface is given by

Vp = D— , (4)
surface

where D is the relevant (material) diffusivity. Using the linearized
form of the Gibbs-Thomson relation (Eq. (2)), the boundary condi-
tion on ¢(r) becomes

Q,Tyk d
(i’(r)‘surface = o + L/ %7 (5)

where ¢o(T) is the equilibrium value of ¢ against a flat crystal sur-
face at (absolute) temperature T and L is the latent heat of fusion per
molecule.

Egs. (3)-(5) then determine the evolution of the system in ex-
actly the same manner as the LSW theory of Ostwald ripening
[11-13].

Suppose the co-ordinates of a point in space are denoted by
(XtruesYtruer Ztrue) and the time by tye, then we can introduce a cap-
illary length for bulk diffusion limited evolution, given by I = yQ, /L
and dimensionless space, time and concentration variables
X= xtrue/IC- t= ttrueD(Tdd)O/dT)/lg and l// = ((b - ¢0)/(Td¢0/dT) Eqs
(3)-(5) then assume the simple form

oy

vzl// = 0, Vnorm = % l/jlsurface =K. (6&, b7 C)

surface

where Vo iS now the dimensionless normal velocity and x the
surface mean curvature in the re-scaled (dimensionless) co-
ordinates.

2. Theoretical results

Recent theoretical work [14] has shown that the very early
stages of the growth of necks is governed by the behaviour of a
travelling- or solitary-wave solution to Eqgs. (6). The picture is that
the cross section of the neck resembles that shown in Fig. 1, where
a teardrop-shaped end forms at the outer edge of the neck.

Analysing this behaviour in Ref. [14] leads to a power-law
dependence of r,, (the neck radius scaled by I¢) on the scaled time
t. Specifically,
dr, 4
a ~ IR 7)
where R is the harmonic mean of the radii of the two spherical crys-
tals (non-dimensionalized using the capillary length I¢), and I(6) is
a number which describes the effect of the dihedral angle at the
grain boundary on the neck growth rate.

To simplify further, we introduce a new variable u (related to
the size of the neck r,), and a re-scaled time t' through

u=r,/Rand t' =t/R. (8a,b)
Eq. (7) then tells us that for small ¢,
u(t') ~ 2(1(00)t) ", 9)

From the calculations in Ref. [14], it is possible to obtain a numer-
ical approximation to the function I(6y) (where 6y is measured in
radians), namely

1(69) ~ 0.20062 — 0.016163. (10)

3. Numerical results

Section 2 discussed a recent theoretical model for sintering at
very early times. In order to study bulk diffusion limited evolution
at late times, we adopt a numerical approach, using spherical po-
lars (r,0), by expanding the concentration field i/ and the boundary
of the crystals ry(6) as a series in Legendre polynomials P,(cos6) in
the following manner:

nay P, (cos 0)

‘//(r-,()vt):IPO‘FZlPZan (11)
n=1
ro(0,6) = Z(0) + . RanPan(c0S ), (12a)
n=0
where
Z(0) = cot(6y/2)| cos 0] + \/cot2(00/2) cos?0+1. (12b)

The R’s, ¥’s and p are all functions of the non-dimensionalized time
t. The series is truncated to a fixed order, which sets the resolution
of the simulation, in contrast to voxel-based simulation approaches
(for example Ref. [15]), where the resolution is determined by an
explicit voxel size.

The functional form of Eq. (12a) consists of two terms: an initial
angle-dependent function Z(6), multiplied by the coefficient p, and
a series of Legendre polynomials in cos(6), with the R’s as coeffi-
cients. The function r = pZ(6) describes a surface composed of two
equal spheres with centres at equal distances from the origin along
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